
Be Aware of the Hot Zone: A Warning System of Hazard Area
Prediction to Intervene Novel Coronavirus COVID-19 Outbreak

Zhenxin Fu
∗

Wangxuan Institute of Computer

Technology, Peking University

Beijing 100871, China

fuzhenxin@pku.edu.cn

Yu Wu
∗

Peking University Health

Science Center

Beijing 100083, China

yuwu@pku.edu.cn

Hailei Zhang

Laiye Technology Inc.

Beijing 100080, China

hailei@laiye.com

Yichuan Hu

Laiye Technology Inc.

Beijing 100080, China

will@laiye.com

Dongyan Zhao

Wangxuan Institute of Computer

Technology, Peking University

Beijing 100871, China

zhaody@pku.edu.cn

Rui Yan
†

Wangxuan Institute of Computer

Technology, Peking University

Beijing 100871, China

ruiyan@pku.edu.cn

ABSTRACT
Dating back from late December 2019, the Chinese city of Wuhan

has reported an outbreak of atypical pneumonia, now known as

lung inflammation caused by novel coronavirus (COVID-19). Cases

have spread to other cities in China and more than 180 countries

and regions internationally. World Health Organization (WHO)

officially declares the coronavirus outbreak a pandemic and the

public health emergency is perhaps one of the top concerns in the

year of 2020 for governments all over the world. Till today, the

coronavirus outbreak is still raging and has no sign of being un-

der control in many countries. In this paper, we aim at drawing

lessons from the COVID-19 outbreak process in China and using

the experiences to help the interventions against the coronavirus

wherever in need. To this end, we have built a system predicting

hazard areas on the basis of confirmed infection cases with location

information. The purpose is to warn people to avoid of such hot

zones and reduce risks of disease transmission through droplets or

contacts. We analyze the data from the daily official information

release which are publicly accessible. Based on standard classifica-

tion frameworks with reinforcements incrementally learned day

after day, we manage to conduct thorough feature engineering from

empirical studies, including geographical, demographic, temporal,

statistical, and epidemiological features. Compared with heuristics

baselines, our method has achieved promising overall performance

in terms of precision, recall, accuracy, F1 score, and AUC. We expect

that our efforts could be of help in the battle against the virus, the

common opponent of human kind.
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1 INTRODUCTION
The outbreak of novel coronavirus COVID-19 epidemic is perhaps

the most serious public health crisis in recent years. Starting from

late December 2019 in Wuhan, a city of China, the disease now

spreads all over the world, causing global emergency right now. By

March 31, 2020, the disease has been confirmed in more than 180

countries and regions, with infections of 750,890 confirmed cases,

causing 36,405 deaths
1
. More importantly, the disease has not been

fully under control, which makes the situation even worse. More

and more countries (and regions) are facing the danger of possible

escalation of infected patients and death victims.

People are now taking actions to fight against the epidemic out-

break. Doctors, nurses, and caretakers are striving to save life. On

the other hand, virologists are racing against the time, analyzing the

genetic map and characteristics of the virus while researchers of the

pharmaceutical industry are working days and nights, seeking for

cure and vaccine. For computer scientists, people are trying every

effort to provide more information about the situation updates
2
,

news summarization and epidemic trend prediction
3
.

1
https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-

reports/

2
https://coronavirus.jhu.edu/map.html

3
https://2019-ncov.aminer.cn/data
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Now we know the novel coronavirus is airborne [15] and is ex-

tremely contagious through contacts (direct or indirect) by cough-

ing, sneezing, and droplet transmission within a particular area [11].

To intervene the epidemic outbreak as early as possible, it plays

a key role to detect—and then to block—the disease transmission

routes. Thanks to the information transparency on the Web, we

are able to acquire information reporting the infection cases from

the government bulletins and other media. We are able to further

analyze the data by extracting location information, activity tra-

jectory, diagnosis time, and live updates of the disease. It is quite

straightforward to come up with an approach to utilize such infor-

mation to predict hazard areas and warn people to pay attention

to the risk of contagion in these zones. People are suggested to

avoid unnecessary contact with the warned locations or to take

extra cautions with better protection in these areas. Perhaps, we

are able to reduce community-level outbreaks and to some extent,

to intervene the outbreak of the COVID-19 epidemic.

To this end, we conduct an empirical study to build a system

to predict hazard areas as the precaution advice for both the gov-

ernment and the public. In particular, based on the information of

infection cases, we predict the hazard level (from 1 to 5) of potential

risks in different locations. We formulate the prediction task as a

standard classification problem. To the best of our knowledge, we

are the first to take efforts to predict hazardous areas in order to

intervene the transmission and outbreak of COVID-19 virus.

Although a classification problem is well-defined, there still exist

multiple challenges for the area prediction task:

• First of all, we need to distill data such as locations, time, and

statistics, etc. by information extraction from unstructured texts.

It is non-trivial to extract the data associated with infection cases.

One of our contributions is to build such a dataset and then release

the data to facilitate further studies.

• Secondly, we are still unclear about the mechanism and key

schema for the COVID-19 disease. Without proper prior knowledge

understanding, it is impractical to use machine learning regime to

automatically extract features: we count on human experiences and

expertise instead. Thus, a second contribution is that we investigate

thorough feature engineering with various possible factors and

characteristics to feed the classification models.

•Moreover, since the epidemic situation is changing from time

to time, some model hyperparameters should be adjusted accord-

ingly. The target is to train a model in the online scenario with

data incrementally updated, and the third contribution is that we

adapt the classification formulation with a reinforcement learning

framework. In this way, the learning and prediction model can

maintain to be up-to-date.

To sum up, our contribution is manifold by solving the above

challenges. We build the warning system to predict hazard areas.

The system consists of a streaming pipeline: extracting information

from webpages, pre-processing data, computing features, training

the model, and then predicting results. We hope the experience in

China can be timely and helpful to other countries and regions in

the world facing the COVID-19 epidemic outbreak.

2 RELATEDWORK
2.1 Virology Studies
By the end of year 2019, the first atypical pneumonia case with

unknown cause was reported in Wuhan, China. The patient works

at the wholesale Hua’nan seafood market inWuhan, where is gener-

ally assumed to be the starting spot of the new epidemic outbreak in

China [23, 31]. Wu et al. identified the causative pathogen, a novel

RNA virus strain, which belongs to the coronavirus family [27].

Phylogenetic analysis of the complete viral genome suggested

that the novel coronavirus is highly similar (more than 80%) to a

bat-derived Severe Acute Respiratory Syndrome (SARS)-like coron-

avirus (i.e., SARS-Cov) [16, 27]. Therefore, the coronavirus is then

named as SARS-Cov-2. Among the several human-infecting coro-

naviruses, the SARS-Cov-2 is genetically related to but distinct

from the original SARS-CoV and Middle East respiratory syndrome

coronavirus (MERS-CoV) [16]. To infect cells, SARS-CoV-2 uses

angiotensin converting enzyme2 (ACE2) as cell entry receptor, just

like SARS-CoV do [19, 33]. Compared with the SARS outbreak in

2002 and MERS in 2012, COVID-19 disease outbreak by SARS-CoV-

2 results in relatively milder symptoms with lower death rate, but

has significantly stronger infectious capability [7, 31].

2.2 Transmission Studies
In the beginning, the novel coronavirus is believed to be limited

human-to-human transmissible, until prominent evidence reveals

clear human-to-human transmission [10, 31]: doctors and nurses

are being infected. The initial basic reproductive number (𝑅0) was

estimated as 2.2-3.8 [14, 22], which indicates that on average 2-3

cases are expected to generate directly by a particular case when

absence of “any deliberate intervention” in the disease transmis-

sion. Unfortunately, the outbreak of the novel coronavirus disease

COVID-19 has rapidly spread from China to other countries.

According to the number of cases exported from Wuhan inter-

nationally, Wu et al. proposed the estimation of the size of the

epidemic in Wuhan [28]. Jung et al. statistically estimated the cu-

mulative incidence and confirmed case fatality risk (cCFR) in main-

land China also by analyzing the exported cases [12]. By fitting

the statistic numbers into the epidemiology models such as the

Susceptible-Exposed-Infectious-Recovered (SEIR) model [13], Peng

et al. estimated the parameters in the SEIR model and forecasted

the infection point and probable ending time [19].

Using a global meta-population disease transmission model, Chi-

nazzi et al. indicated that travel restriction of Wuhan can modestly

delay the epidemic trajectory in China, but can slow down the

international epidemic progression more remarkably [3]. Studies

also revealed that the world-wide lockdown policies could have

more prominent impacts if combined with a reduction of city-level

travels and commuting [5, 24, 28].

To this end, the idea inspires us that in combination with travel

restrictions in global and local communities, a warning system

indicating hazard areas can possibly make such policies more ef-

fective and more efficient: residents within high risk areas should

conform to stay-at-home orders; people shall be advised to avoid

unnecessary commuting to these locations; if possible, these areas

shall be carefully monitored, and sanitized by sterilizing droplets

in the environment.
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3 HAZARD AREA PREDICTION SYSTEM
To introduce the warning system of hazard area prediction, we first

briefly describe the system pipeline with processing component

modules. Then we formulate the model and elaborate the features

as well as the learning framework with reinforcements.

3.1 System Pipeline
The first step of the system is Data Collection. Then we crawled

the webpages reporting the confirmed infection cases. In the com-

ponent module of Information Extraction, we are able to obtain

the timestamps, motion trajectories, residential location and other

relevant information. The data of confirmed cases are totally anony-

mous, with no personal privacy leaks.

With the extracted data, we conduct the Pre-processing and Filter-
ing module to keep the valid samples and rule out incomplete data

which cannot be trained for location prediction. Then we train the

classification module as the Prediction Model. Note that since new
data stream in every day, the prediction model learning is actually

an online setup and incrementally reinforced day after day. In this

way, we update parameters and learn the model iteratively. Given

the prediction results, we have a Visualization Interface component

to show the results via online map
4
. Users are able to check the

predicted areas with different levels of warning on the map directly.

3.2 Model Formulation
Since we target at predicting the hazard area to warn people to pay

extra precaution to the possibly contagious zone, we formulate the

task as labeling the specific location 𝑙 with associated features x
as “in hazard” (𝑦=1) or “not in hazard” (𝑦=0), which is a standard

binary classification formulation learned as 𝑓 (𝑦, x). It is intuitive to
establish a pre-defined threshold (for example, 0.5) to determine a

label when 𝑓 (·) above the threshold and otherwise when 𝑓 (·) below
the threshold. In this paper, we characterize the hazard in a finer-

granularity: given the labels, we train the classification function.

When predicting the labels, we categorize the hazard in 5-level

scale function Label(·):

Label(𝑙) =



Level-5 if 0.8 < 𝑓 (𝑦, x) ≤ 1;

Level-4 if 0.6 < 𝑓 (𝑦, x) ≤ 0.8;

Level-3 if 0.4 < 𝑓 (𝑦, x) ≤ 0.6;

Level-2 if 0.2 < 𝑓 (𝑦, x) ≤ 0.4;

Level-1 if 0.0 ≤ 𝑓 (𝑦, x) ≤ 0.2;

To predict the label of a location 𝑙 , it is critical to extract the as-

sociated features x which are expected to be relevant to the disease

transmission and epidemic outbreak. In the following section, we

elaborate the feature engineering for COVID-19 disease.

3.3 Features
We categorize the features into a couple of major categories, and

extract the features from different groups of characteristics.

3.3.1 Geographical Features. The outbreak of epidemic disease

is highly relevant to geolocation information. Big cities such as

transportation hubs are generally facing with greater risk due to

4
Baidu Map API: https://lbsyun.baidu.com/

Figure 1: Illustration of nearest neighbors and individual
motion trajectories. A confirmed case revealed the travel
path. In this figure, we illustrate two trajectories on themap.
Besides the nearest neighbors illustrated, we also show the
activity range as the grey circle.

massive population mobility. It is believed that coronavirus quickly

spreads from Wuhan—the COVID-19 starting spot of its outbreak

in China—because Wuhan efficiently and conveniently connects to

other parts of the whole country. Therefore, we first introduce two

features related to the geography as longitude and latitude, where
the calculation is defined as the corresponding coordinates:

𝑥1 = longitude(𝑙) (1)

𝑥2 = latitude(𝑙) (2)

Since the coronavirus is airborne through close contacts, it mat-

ters how close it is for an area to the location(s) of confirmed case(s).

Here we introduce a distance function 𝑑𝑖𝑠𝑡 (·) to calculate the dis-

tance between two locations. Here, we introduce a hyperparameter

of 𝑘 to identify the 𝑘-nearest cases with locations (denoted as a

cluster of 𝐿
kNN

), which are calculated using the distance function.

We formulate the following distance-based features:

𝑥3 = min𝑙 𝑗 ∈𝐿kNNdist(𝑙, 𝑙 𝑗 ) (3)

𝑥4 = avg𝑙 𝑗 ∈𝐿kNNdist(𝑙, 𝑙 𝑗 ) (4)

which is to calculate the shortest distance to the𝑘-nearest confirmed

locations and the average distance to the 𝑘-nearest cases.

Usually, the confirmed locations do not simply indicate discrete

location points due to human mobility. For some cases, we are able

to identify the motion trajectory from the information release, and

we believe the areas within the trajectory might be hazardous. We

denote all the locations within the scope of a particular trajectory

and denote these locations as a cluster 𝐿trajectory. Then we have:

𝑥5 = min𝑙 𝑗 ∈𝐿trajectorydist(𝑙, 𝑙 𝑗 ) (5)

𝑥6 = avg𝑙 𝑗 ∈𝐿trajectorydist(𝑙, 𝑙 𝑗 ) (6)

In this paper, we set an upper limit of the longest travel distance

𝑑 within the trajectory area for an individual in Figure 1.

Finally, we assume that the location of a confirmed case is un-

likely to be a single data point: people generally have a range of

daily activities. We set up a hyperparameter of radius range 𝑟 , and

define a simple boolean function which indicates 𝑙 is located within

the range of confirmed cases. Within the range, people still have
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the risk to be infected by the confirmed cases via occasional and

unexpected contacts.

𝑥7 =

{
0 if min𝑙 𝑗 ∈𝐿kNN𝑑𝑖𝑠𝑡 (𝑙, 𝑙 𝑗 ) > 𝑟

1 if otherwise

(7)

Note that 𝑥5, 𝑥6 and 𝑥7 are different given the hyperparameters,

which is determined by motion trajectory and daily activities.

3.3.2 Demographic Features. Epidemic outbreak is highly relevant

to population distribution: it is intuitive that higher population

density possibly results in higher danger of facing disease conta-

gion. The demographic feature is associated with function facilities

within the area, and we have the statistics of function facilities (i.e.,

supermarkets, shopping malls, hospitals, metro stations, and apart-
ment complex) within the activity range 𝑟 of the area to predict:

𝑥8 = num(𝑙
market

) where dist(𝑙, 𝑙
market

) ≤ 𝑟 (8)

𝑥9 = num(𝑙
mall
) where dist(𝑙, 𝑙

mall
) ≤ 𝑟 (9)

𝑥10 = num(𝑙
hospital

) where dist(𝑙, 𝑙
hospital

) ≤ 𝑟 (10)

𝑥11 = num(𝑙apartment) where dist(𝑙, 𝑙apartment) ≤ 𝑟 (11)

𝑥12 = num(𝑙metro) where dist(𝑙, 𝑙metro) ≤ 𝑟 (12)

The function 𝑛𝑢𝑚(·) is to count the number of typical function

facilities within the area range.

The numbers of facilities cannot always accurately characterize

demographic density. Hence we introduce two more index to show

population of the area. We roughly estimate the population density

based on the functions in orders of magnitude (0.1k people for a

market, 0.5k for a mall and a hospital, 1k for a metro station, and

10k residents in the apartments):

𝑥13 =
0.1𝑥8 + 0.5𝑥9 + 0.5𝑥10 + 10𝑥11 + 1𝑥12

Unit Land Area

∝ 0.1𝑥8 + 0.5𝑥9 + 0.5𝑥10 + 10𝑥11 + 1𝑥12
(13)

When calculating the density for each particular location, we

use the same unit land area. Thus, we omit the denominator in

Equation (13). Note that the naive number estimation is a highly

simplified model based on city statistics in China. The population

numbers actually vary from city to city. As a pilot study, we empir-

ically choose the same setup for all cities in China.

Besides the population density of the neighborhood, we use a

macro feature of total city population for the location 𝑙 which we

need to make a prediction:

𝑥14 = 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛(City(𝑙)) (14)

The population of a city in China is publicly available.

3.3.3 Temporal Features. A unique character of an infectious dis-

ease to spread is that it takes time to incubate after exposure and

infection, which is known as incubation time. Thus, we associate

the relationship between temporal information and disease trans-

mission. 𝑡 (·) is to record the timestamp of the case with location.

𝑥15 = |𝑡 (𝑙) − 𝑡 (𝑙𝑖 ) | where 𝑙𝑖 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑙𝑖 ∈𝐿kNN𝑑𝑖𝑠𝑡 (𝑙, 𝑙𝑖 ) (15)

𝑥16 =𝑚𝑖𝑛𝑙𝑖 ∈𝐿kNN |𝑡 (𝑙) − 𝑡 (𝑙𝑖 ) | (16)

𝑥17 = 𝑎𝑣𝑔𝑙𝑖 ∈𝐿kNN |𝑡 (𝑙) − 𝑡 (𝑙𝑖 ) | (17)

𝑥18 =𝑚𝑖𝑛𝑙𝑖 ∈𝐿trajectory |𝑡 (𝑙) − 𝑡 (𝑙𝑖 ) | (18)

We keep the record of the time difference between the current

time and the case time. We expect the larger the time gap is, the

less influence is supposed to exist within the neighborhood.

3.3.4 Temperature. Clinical studies have revealed that temperature

is highly relevant to the transmission of coronavirus of respiratory

diseases such as SARS [2]. Since SARS transmission is sensitive to

temperature and the novel coronavirus is known to be quite similar

to SARS in the genome sequence. Given such an assumption, we

introduce the temperature information for our prediction model:

𝑥19 =𝑚𝑖𝑛(𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 (𝐶𝑖𝑡𝑦 (𝑙))) (19)

𝑥20 =𝑚𝑎𝑥 (𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 (𝐶𝑖𝑡𝑦 (𝑙))) (20)

𝑥21 = 𝑎𝑣𝑔(𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 (𝐶𝑖𝑡𝑦 (𝑙))) (21)

The features indicate the minimum, maximum and average tem-

perature for the location 𝑙 respectively.

3.3.5 Live Update Features. The daily disease situation reports are

publicly accessible by official press. We believe the statistic and

fact numbers are highly relevant to the warning system: intuitively,

once there are still a large number of active cases, we will be facing

with severe situation to massive areas in the battle against the

pandemic. We include (almost) all important facts as features.

𝑥22 = 𝑐𝑜𝑛𝑓 𝑖𝑟𝑚𝑒𝑑 (𝐶𝑖𝑡𝑦 (𝑙)) (22)

𝑥23 = 𝑐𝑜𝑛𝑓 𝑖𝑟𝑚𝑒𝑑 (𝑁𝑎𝑡𝑖𝑜𝑛𝑎𝑙) (23)

𝑥24 = 𝑠𝑢𝑠𝑝𝑒𝑐𝑡𝑒𝑑 (𝐶𝑖𝑡𝑦 (𝑙)) (24)

𝑥25 = 𝑠𝑢𝑠𝑝𝑒𝑐𝑡𝑒𝑑 (𝑁𝑎𝑡𝑖𝑜𝑛𝑎𝑙) (25)

𝑥26 = 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦 (𝐶𝑖𝑡𝑦 (𝑙)) (26)

𝑥27 = 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦 (𝑁𝑎𝑡𝑖𝑜𝑛𝑎𝑙) (27)

𝑥28 = 𝑑𝑒𝑎𝑡ℎ(𝐶𝑖𝑡𝑦 (𝑙)) (28)

𝑥29 = 𝑑𝑒𝑎𝑡ℎ(𝑁𝑎𝑡𝑖𝑜𝑛𝑎𝑙) (29)

Since the cities within the whole country are not absolutely

isolated from each other and people are traveling between cities,

we introduce the facts from both the nation-wide level and the

city-level results. Besides the cumulative numbers of the features,

we also incorporate the new case numbers for each day.

𝑥30 = 𝑛𝑒𝑤_𝑐𝑜𝑛𝑓 𝑖𝑟𝑚𝑒𝑑 (𝐶𝑖𝑡𝑦 (𝑙)) (30)

𝑥31 = 𝑛𝑒𝑤_𝑐𝑜𝑛𝑓 𝑖𝑟𝑚𝑒𝑑 (𝑁𝑎𝑡𝑖𝑜𝑛𝑎𝑙) (31)

𝑥32 = 𝑛𝑒𝑤_𝑠𝑢𝑠𝑝𝑒𝑐𝑡𝑒𝑑 (𝐶𝑖𝑡𝑦 (𝑙)) (32)

𝑥33 = 𝑛𝑒𝑤_𝑠𝑢𝑠𝑝𝑒𝑐𝑡𝑒𝑑 (𝑁𝑎𝑡𝑖𝑜𝑛𝑎𝑙) (33)

𝑥34 = 𝑛𝑒𝑤_𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦 (𝐶𝑖𝑡𝑦 (𝑙)) (34)

𝑥35 = 𝑛𝑒𝑤_𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦 (𝑁𝑎𝑡𝑖𝑜𝑛𝑎𝑙) (35)

𝑥36 = 𝑛𝑒𝑤_𝑑𝑒𝑎𝑡ℎ(𝐶𝑖𝑡𝑦 (𝑙)) (36)

𝑥37 = 𝑛𝑒𝑤_𝑑𝑒𝑎𝑡ℎ(𝑁𝑎𝑡𝑖𝑜𝑛𝑎𝑙) (37)

Industry (SIRIP) Papers I  SIGIR ’20, July 25–30, 2020, Virtual Event, China

2244



3.3.6 Epidemiological Dynamics. Furthermore, we take a look at

the transmission dynamics of the novel coronavirus COVID-19 to

measure how it diffuses and disperses. First, we introduce the index

of diffusion and dispersion.

𝑥38 =
𝑥30

𝑥22 − 𝑥26 − 𝑥28
(38)

𝑥39 =
𝑥31

𝑥23 − 𝑥27 − 𝑥29
(39)

𝑥40 =
𝑥26 + 𝑥28

𝑥22 − 𝑥26 − 𝑥28
(40)

𝑥41 =
𝑥27 + 𝑥29

𝑥23 − 𝑥27 − 𝑥29
(41)

The higher index of diffusion indicates higher risks for new cases

to be confirmed from both the city-level (𝑥38) and the nation-level

(𝑥39). The index of dispersion indicates how likely the disease is

going to retreat by removal of inactive cases (i.e., ‘recovery’+‘death’)

based on the city-level (𝑥40) and the nation-level (𝑥41).

Growth Rate and Doubling Time are also important concepts to

characterize the severity of a pandemic outbreak [25]. The doubling

time is time it takes for the confirmed cases to double in size [13].

In general, we have the growth rate defined as follows:

𝑥42 =
ln(𝑥22) − ln(𝑥22 − 𝑥30)

Δ𝑡 = 1

(42)

𝑥43 =
ln(𝑥23) − ln(𝑥23 − 𝑥31)

Δ𝑡 = 1

(43)

We set the time unit as 1-day, and suppose that the growth rate

within a day is a constant. The growth rate characterize the ratio

of confirmed cases between the current day and the day before in

the natural logarithm. 𝑥42 and 𝑥43 correspond to the city-level and

nation-level features.

Given the growth rate, it is straightforward to obtain the doubling
time for the local cases 𝑥44 and national cases 𝑥45 by:

𝑥44 =
ln(2)

ln(1 + 𝑥42)
(44)

𝑥45 =
ln(2)

ln(1 + 𝑥43)
(45)

There are approaches such as the SEIR model to simulate the

epidemic outbreak process. However, we cannot obtain the accu-

rate number of exposed cases, we degenerate the SEIR model to an

susceptible-infectious-recovered (SIR) model with exact analytical so-

lutions [8]. There are three groups of people: those that are healthy

but susceptible to the disease (S), the infected (I) and the people

who have recovered (R). To model the dynamics of the outbreak we

need three differential equations, one for the change in each group,

where 𝛽 is the parameter that controls the transition between S and

I and 𝛾 which controls the transition between I and R. A healthy

individual can be infected and then can be recovered:

𝑑𝑆

𝑑𝑡
= − 𝛽𝐼𝑆

𝑁

𝑑𝐼

𝑑𝑡
=

𝛽𝐼𝑆

𝑁
− 𝛾𝐼

𝑑𝑅

𝑑𝑡
= 𝛾𝐼

where 𝑁 = 𝑆+𝐼+𝑅. Since we have the numbers for the 𝑆 , 𝐼 , and 𝑅, we

can use the known data to infer the parameters of 𝛾 and 𝛽 . The in-

fection probability of 𝛽 is very critical to characterize; the recovery

rate of 𝛾 depends on the medical level, public health measurements,

and government policies. More importantly, we calculate the ba-
sic reproductive number (𝑅0) which denotes the expected number

of cases directly generated by one case in a population where all

individuals are susceptible to infection using 𝛽 and 𝛾 .

𝑥46 = 𝛽 (𝐶𝑖𝑡𝑦 (𝑙)) (46)

𝑥47 = 𝛽 (𝑁𝑎𝑡𝑖𝑜𝑛𝑎𝑙) (47)

𝑥48 = 𝛾 (𝐶𝑖𝑡𝑦 (𝑙)) (48)

𝑥49 = 𝛾 (𝑁𝑎𝑡𝑖𝑜𝑛𝑎𝑙) (49)

As to the basic reproductive numbers:

𝑥50 = 𝑅0 (𝐶𝑖𝑡𝑦 (𝑙))

=
𝛽 (𝐶𝑖𝑡𝑦 (𝑙))
𝛾 (𝐶𝑖𝑡𝑦 (𝑙)) =

𝑥46

𝑥48

(50)

𝑥51 = 𝑅0 (𝑁𝑎𝑡𝑖𝑜𝑛𝑎𝑙)

=
𝛽 (𝑁𝑎𝑡𝑖𝑜𝑛𝑎𝑙)
𝛾 (𝑁𝑎𝑡𝑖𝑜𝑛𝑎𝑙) =

𝑥47

𝑥49

(51)

Note that 𝑥46-𝑥51 are not constants: they are subject to change

as the situations have changed on the city-level and nation-level.

3.4 Learning Model
Given the extracted features x={𝑥1, 𝑥2, . . . , 𝑥51}, we predict the label
using 𝑓 (𝑦, x). The function 𝑓 (·) can be standard machine learning

models such as Support Vector Machine (SVM) [4], Decision Tree

(DT) [20], Naive Bayes (NB) [17], Random Forests (RF) [9], Multi-

Layer Perceptron (MLP) [1], and Gradient Boosting Decision Tree

(GBDT) [18]. These standard classificationmodels are all compatible

with our proposed framework.

Note that in our proposed features, there are a set of hyperpa-

rameters, i.e., the number of nearest neighbors 𝑘 , the range of daily

activity 𝑟 , and the upper bound of distance for a trajectory 𝑑 . To

tune these hyperparameters, we introduce a reinforcement learning

framework to adapt with the updating data streams.

The reinforcement learning framework consists of a genera-

tor 𝑔(·) to generate the hyperparameters and a policy gradient

method to optimize the hyperparameter generator. In this paper,

we instantiate the generator as a vanilla recurrent neural network

(RNN) [1, 29, 30]. We use ℎ to denote the hyperparameter set and

each hyperparameter ℎ𝑖 is regarded as a token. We have an assump-

tion here that the hyperparameters are not completely independent

on each other. The RNN generator is able to generate the hyperpa-

rameter tokens one by one. We maintain a set of predefined setups

for these hyperparameters. The generator transforms them into

token representations and selects the token through a softmax layer,

which is similar to word generation by the look-up table through

text vocabularies [6]. At each timestep, the generator 𝑔(·) generates
a hyperparameter.

One limitation is that we do not have any supervised signal to

train the hyperparameter generator. A natural solution is that we

utilize the reinforcement learning based on policy gradient to give

feedback to the hyperparameter generator, which is inspired from

Neural Architecture Search (NAS) [32]. In practice, we train the
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Figure 2: Data statistics of China from Jan 20 to Mar 2. We
keep the data samples with location information for predic-
tion. The vertical axis on the left side indicates new cases
while the vertical axis on the right side indicates accumula-
tive cases (both axis indicating raw data and pre-processed
data with location information).

prediction model, calculate the results and then denote the reward

as𝑞 to optimize the hyperparameters of the predictionmodel during

the reinforcement process. The training objective is to minimize the

negative expected reward following the REINFORCE algorithm [26].

𝜃 denote the parameters of the generator.

𝐽 (𝜃 ) = E[𝑞 | (ℎ, 𝜃 )] (52)

The gradient is estimated as:

∇𝐽 (𝜃 ) ≈ (𝑞 − 𝑏)∇𝜋𝜃 (ℎ, 𝜃 ) (53)

𝜋𝜃 (ℎ, 𝜃 ) represents the probability of generating the current hyper-

parameters ℎ. 𝑏 denotes the baseline value to reduce the variance

of the gradient estimate while keeping it unbiased [21]. To be more

specific,𝑏 is an exponential moving average of the previous rewards,

and is updated with a coefficient empirically set as 0.8:

𝑏 ← 0.8 × 𝑏 + (1 − 0.8) × 𝑞 (54)

We set the model learning in an online mode, which is to be

updated every previous day (when 𝑡𝑖 < 𝑡 ) as new data are incor-

porated. The function yields the following gradient to update the

generator:

∇𝐽 (𝜃 ) ≈
𝑡−1∑
𝑖=1

(𝑞𝑖 − 𝑏)∇𝜋𝜃 (ℎ, 𝜃 ) (55)

The parameters are updated with a learning rate 𝜂 (𝜂 = 0.01):

𝜃 ← 𝜃 + 𝜂∇𝐽 (𝜃 ) (56)

4 EXPERIMENTS AND EVALUATIONS
In this section, we will introduce the experimental results based on

the epidemic outbreak of COVID-19 coronavirus in China. In the

meanwhile, some case studies are demonstrated for revealing more

insights from our proposed model, features and data.

4.1 Dataset
All the information released from the government officials can

be publicly accessible through government webpages, including

Table 1: Statistics about sample size and details about the
COVID-19 epidemic outbreak data. The statistics indicate
samples after pre-processing and incomplete data removal.
The data are collected till March, 2020.

Statistics Values

total # of reported cases (raw data) 81,604

total # of reported cases (w/ location) 16,166

total # of reported cities 297

avg # of reported case per city 54

max # of reported case within a city 1,104

min # of reported case within a city 1

max peak # of new cases within a city 414

min peak # of new cases within a city 1

avg peak # of new cases within a city 23

earliest starting date (first new case) Jan 21 (Meizhou, etc.)

earliest clearance date (no more new case) Jan 28 (Yingkou)

ending date Mar 2 (Shanghai, etc.)

longest duration (in terms of days) 28 (Anyang)

shortest duration (in terms of days) 1 (Chengde, etc.)

avg duration (in terms of days) 12

total duration (in terms of days) 42

Table 2: Experimental setups for model training/learning.

Phase Statistics Training Validation Testing

I

Duration Jan 20-Feb 5 Feb 6-Feb 7 Feb 8-Mar 2

# of Cases 8,926 5,871 24,542

Pos(+)/Neg(-) 1,756/7,170 1,961/3,910 6,132/18,410

II

Duration Jan 20-Feb 12 Feb 13-Feb 14 Feb 15-Mar 2

# of Cases 32,743 6,596 21,658

Pos(+)/Neg(-) 8,853/23,890 996/5,600 2,668/18,990

III

Duration Jan 20-Feb 19 Feb 20-Feb 21 Feb 22-Mar 2

# of Cases 55,235 5,762 15,892

Pos(+)/Neg(-) 11,975/43,260 542/5,220 672/15,220

the statistics of all administrative cities and provinces in China.

We release the data via our project page
5
for everyone wishing to

contribute efforts for the fight against COVID-19 novel coronavirus.

The dataset consists of 81,604 reported cases in total, among

which 16,166 cases are associated with location information. Our

work aims at predicting the hazard areas under the pandemic sce-

nario. Thus, incomplete data points without location information

will be filtered and removed as pre-processing. Unfortunately, most

of the reported cases in the city of Wuhan are incomplete without

location information and have to be removed. The timestamps of

the reported cases are associated with the publish dates.

It is important to note that reported cases are not supposed to

have permanent impacts on model learning. Generally, it is believed

that an area without new cases for a period of incubation (i.e., 7-14

days) would be safe from local community COVID-19 spreading:

the area is clear. To this end, we remove data points reported 14

days ago when learning the predictive model for a particular date.

We summarize the statistics of the dataset in Table 1 and Figure 2.

5
https://github.com/fuzhenxin/COVID19Warnings
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Table 3: Model performance for Phase I, II, and III w.r.t. Level-5 and Level-4 predictions.

Predicting Level-5 Predicting Level-4 and Above Overall

Phase I p r F1 acc. p r F1 acc. AUC

Baseline1 0.4478 0.6021 0.5136 0.7151 0.3565 0.7118 0.4751 0.6070 0.6884

Baseline2 0.4473 0.6029 0.5135 0.7146 0.3565 0.7118 0.4751 0.6069 0.6883

NB 0.6365 0.7265 0.6785 0.8280 0.5911 0.7634 0.6663 0.8089 0.8922

NB+RL 0.6352 0.7319 0.6802 0.8280 0.5861 0.7811 0.6697 0.8075 0.8935
GBDT 0.8624 0.1670 0.2798 0.7854 0.8351 0.3579 0.5011 0.8218 0.8615

GBDT+RL 0.8579 0.1249 0.2180 0.7762 0.8109 0.3017 0.4398 0.8078 0.8622

MLP 0.8188 0.3034 0.4428 0.8087 0.7711 0.3973 0.5244 0.8190 0.8618

MLP+RL 0.8235 0.2722 0.4091 0.8029 0.7809 0.3626 0.4952 0.8145 0.8624

Predicting Level-5 Predicting Level-4 and Above Overall

Phase II p r F1 acc. p r F1 acc. AUC

Baseline1 0.2974 0.7440 0.4250 0.7520 0.2139 0.8253 0.3397 0.6048 0.7676

Baseline2 0.2967 0.7448 0.4243 0.7510 0.2139 0.8253 0.3397 0.6048 0.7672

NB 0.4749 0.7496 0.5815 0.8671 0.4349 0.8025 0.5641 0.8472 0.9105

NB+RL 0.4797 0.7526 0.5859 0.8690 0.4194 0.7965 0.5495 0.8391 0.9111

GBDT 0.9557 0.3480 0.5102 0.9177 0.8712 0.5449 0.6704 0.9340 0.9404

GBDT+RL 0.9493 0.3238 0.4829 0.9146 0.8871 0.5394 0.6708 0.9347 0.9423
MLP 0.7714 0.3123 0.4446 0.9037 0.6402 0.3927 0.4868 0.8974 0.7828

MLP+RL 0.8210 0.3071 0.4470 0.9063 0.7163 0.3799 0.4965 0.9046 0.8106

Predicting Level-5 Predicting Level-4 and Above Overall

Phase III p r F1 acc. p r F1 acc. AUC

Baseline1 0.0776 0.5327 0.1355 0.7126 0.0685 0.7530 0.1255 0.5563 0.6748

Baseline2 0.0780 0.5372 0.1361 0.7117 0.0685 0.7545 0.1257 0.5561 0.6757

NB 0.1943 0.5863 0.2919 0.8797 0.1626 0.6890 0.2631 0.8368 0.8652

NB+RL 0.1971 0.5967 0.2963 0.8801 0.1634 0.6652 0.2623 0.8418 0.8639

GBDT 0.6645 0.2560 0.3696 0.9621 0.4716 0.4246 0.4469 0.9551 0.9194
GBDT+RL 0.6674 0.2688 0.3833 0.9623 0.4498 0.4315 0.4405 0.9532 0.9185

MLP 0.1965 0.3021 0.2381 0.9180 0.1616 0.4335 0.2354 0.8805 0.7662

MLP+RL 0.2380 0.3224 0.2738 0.9278 0.1794 0.4638 0.2587 0.8867 0.7488

4.2 Evaluation Metrics
We include the classic evaluation metrics for the classification task

using accuracy, precision, recall and F1 scores [17]. Since we have
different levels of prediction, we list the results for different levels

as well. In particular, we pay extra attention to the areas with higher

alerts (Level-4 and above). We adopt the same evaluation standard

for all methods in our experiments.

In the real-world process of decision making, people usually

decide a latent threshold to identify risky areas. Empirically, the

threshold is highly relevant to personal choices. Thus, we compre-

hensively validate the performance using the AUC index to measure

the performance under different levels [17]. AUC can reflect model

performance within different boundary values between classes and

thus is widely used in two-class classification problems.

4.3 Experimental Setups
In general, we have a dataset with a duration of 42 days nationwide.

We investigate the prediction capability of our proposed model for

3 distinctive phases in China: Phase I) beginning stage (i.e., late

January or early February), Phase II) outbreaking stage (i.e., mid-

February), and Phase III) ending stage (i.e., late February or early

March). We roughly divide the phases according to the growth rate.

To be more specific, the details of training/validation/testing split

for each phase are illustrated in Table 2.

Considering the incubation time, we predict all the future cases

within 7-14 days to make the system timely effective. As mentioned

in Section 3.4, various standard classification models are compatible

with our framework. we use Naive Bayes (NB), GBDT and MLP

for model learning. We use the model parameter setups by default.

As to the hyperparameters, we set 𝑟 and 𝑑 from a range of 1 km

to 20 km while select 𝑘 from 5 to 20, all trained by reinforcement

learning. In our experiments, we set the AUC scores as the reward

of reinforcement learning.

It is critical to choose eligible negative samples to pair up with

positive samples for model learning. We have investigated random

negative sampling, which would make the data points too sparse

to make accurate predictions. To this end, we use the strategy of
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Figure 3: Feature analysis (NB). The performance is the av-
erage result of Phase I, II, and III, measured by AUC.

restricted negative sampling, which is to sample negative data points

within the same cities as the positive samples.

4.4 Baseline Approaches
Our proposed model is learned with a series of features extracted

from the dataset based on the reinforced machine learning frame-

work. To demonstrate the effectiveness of our proposed method

with empirical features, we establish two heuristic baselines based

on the most straightforward features: distance to the near-by con-

firmed cases and/or trajectories.

• Baseline 1. We measure the distance of the candidate area to the

nearest confirmed case, and predict the levels of hazard accordingly.

Label(𝑙) =



Level-5 if 0 ≤ min𝑙 𝑗 ∈𝐿kNN𝑑𝑖𝑠𝑡 (𝑙, 𝑙 𝑗 ) < 𝑟 ;

Level-4 if 𝑟 ≤ min𝑙 𝑗 ∈𝐿kNN𝑑𝑖𝑠𝑡 (𝑙, 𝑙 𝑗 ) < 2𝑟 ;

Level-3 if 2𝑟 ≤ min𝑙 𝑗 ∈𝐿kNN𝑑𝑖𝑠𝑡 (𝑙, 𝑙 𝑗 ) < 3𝑟 ;

Level-2 if 3𝑟 ≤ min𝑙 𝑗 ∈𝐿kNN𝑑𝑖𝑠𝑡 (𝑙, 𝑙 𝑗 ) < 4𝑟 ;

Level-1 if 4𝑟 ≤ min𝑙 𝑗 ∈𝐿kNN𝑑𝑖𝑠𝑡 (𝑙, 𝑙 𝑗 );

• Baseline 2. We measure the distance of the candidate area to

the nearest trajectory of a confirmed case, and similarly, predict

the levels of hazard in the same way as Baseline 1.

Label(𝑙) =



Level-5 if 0 ≤ min𝑙 𝑗 ∈𝐿trajectory𝑑𝑖𝑠𝑡 (𝑙, 𝑙 𝑗 ) < 𝑟 ;

Level-4 if 𝑟 ≤ min𝑙 𝑗 ∈𝐿trajectory𝑑𝑖𝑠𝑡 (𝑙, 𝑙 𝑗 ) < 2𝑟 ;

Level-3 if 2𝑟 ≤ min𝑙 𝑗 ∈𝐿trajectory𝑑𝑖𝑠𝑡 (𝑙, 𝑙 𝑗 ) < 3𝑟 ;

Level-2 if 3𝑟 ≤ min𝑙 𝑗 ∈𝐿trajectory𝑑𝑖𝑠𝑡 (𝑙, 𝑙 𝑗 ) < 4𝑟 ;

Level-1 if 4𝑟 ≤ min𝑙 𝑗 ∈𝐿trajectory𝑑𝑖𝑠𝑡 (𝑙, 𝑙 𝑗 );

Here, we use the best tuned range 𝑟 ∈ [1km, 20km] for the

baselines, which is the same empirical setup for our methods in the

reinforcement learning framework.

4.5 Results
4.5.1 Overall Performance. We compare the performance of all

methods including baselines and our proposed prediction model

with various features, measured in terms of all evaluation metrics.

In Table 3 we list the overall results for these methods.

Surprisingly, the heuristics-inspired baselines are rather com-

petitive. Yet, it is not difficult to understand that distance-oriented

information is critical for the hazard area prediction task (consid-

ering that COVID-19 coronavirus is transmitted within a short

Figure 4: Feature analysis (GBDT). The performance is the
average result of Phase I, II, and III, measured by AUC.

distance). Such an assumption may explain the performance of the

two baselines which are designed by distance measurements.

The learning based models (NB and GBDT) generally perform

better than the heuristic baselines. Distance features are important,

while we ascribe the improvement of the results from other various

features. We will further ablate the feature analysis in the following

sections. The performance of MLP is not as expected. As is well-

understood that neural networks are data hungry, the insufficient

data samples perhaps lead to the unsatisfying results of MLP.

We take a closer look at the details of the scores achieved by

different methods. All models, including two baselines, have better

performance in recall scores, except the GBDT model. Generally,

GBDT tends to have a relatively higher precision score. We conclude

that different models have different preference towards precision

and recall. For the city residents, the recall metric matters more: it

is important to identify as more hazard areas as possible. People

should be warned to avoid those areas.

There are two warning strategies: 1) Level-5 and 2) Level-4 and

above. There is trade-off between the two strategies: the Level-5

strategy is more conservative with much higher precision but lower

recall. In contrast, the latter strategy is more aggressive, trying

to retrieve more possible hazard areas while the precision score

naturally drops. The AUC score indicates the overall performance

of predictions on all levels.

As to the performance of different phases, we can see the models

predict better during the starting phase and the outbreaking phase

(i.e., Phase I and Phase II). The prediction performance for Phase

III demonstrates a clear drop in terms of almost all metrics for all

methods. We ascribe this phenomenon to the efforts of reaction

forces: the government is taking actions to prevent disease trans-

mission while people are wearing face masks and other protections.

Therefore, there are much fewer infection cases than the model

originally expected!

It is interesting to see that the reinforcement learning component

generally contributes to the overall performance of the learning

based models. Yet there are two concerns of the reinforcement

component: 1) the improvement is not consistently stable for all

models, and 2) the improvement is to some extent marginal. As to

the marginal effect, since we use reinforcement learning to train

only hyperparameters (𝑘 , 𝑟 , and 𝑑), which may be a limitation to

the reinforcement component. The benefit of utilizing reinforced

learning is to tune hyperparameters incrementally as the epidemic
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evolves, which leads to more accurate model prediction. Thus, when

the conditions are intervened (such as government efforts), the

effects may be subject to change as well, which leads to less stable

performance in our experiments (e.g., Phase III).

4.5.2 Feature Analysis. We further analyze the contribution of

all features. We conduct an ablation study on the features and

visualize the result in Figures 3-4.With 51 features in total, we group

them into 6 different feature groups: 1) geographical features, 2)
demographic features, 3) temperature, 4) temporal, 5) live updates, and
6) epidemiological dynamics. We also list the overall performance of

the full model which employs all factors for comparison. Here we

examine the contributions of the different feature groups defined

in our method. To be more specific, in the ablation experiments,

we show the performance of all the factors in isolation (namely

‘Add-1’) and then leave-one-out (namely ‘Drop-1’) from the full

combination of all features, one feature group at a time.

From Figures 3 and 4, we see that all of the feature groups are

generally positive in our evaluation tasks, although have different

performance in different prediction models. The NB model prefers

to use demographic features and live update facts for prediction

while the model decides that temperature features and temporal fea-

tures have little effect for classification. The GBDT model concurs

with the results of the NBmodel: temperature and temporal features

contribute to the overall performance but not too much. For both

the NB and the GBDT models, demographic features are quite im-

portant for the prediction performance. Geographical features, live

update facts, and epidemiological features are also demonstrated to

be the top factors in the Add-1 tests. Such features are expected to

be useful for prediction because they are closely associated with the

disease transmission: dense population to infect, short distance of

transmission and the current overall situation of infectious group.

We have examined the variance of temperature during the epi-

demic outbreak. The temperature does not change too much during

the entire February for most of the cities, which could be the rea-

son why temperature features fail to be effectively discriminative.

As to the temporal features, since we have pre-processed the data

samples by removing cases reported more than 14 days ago, the

effectiveness of temporal features may be compromised.

4.5.3 A More Proactive Strategy. For the common people, the best

way to use the warning system is to avoid unnecessary contact with

the predicted hazard areas with high alert levels. However, we do

have a potential choice to be more proactive in the combat against

COVID-19. For instance, the administrative forces can closely mon-

itor areas of high alerts, and sanitize such areas regularly to prevent

possible disease transmission with a good chance.

Different models have different capability of prediction: some

models tend to warn more locations with higher recall while others

may warn fewer locations for better precision. Without doubt, it

is impractical to take proactive actions for all predicted locations.

Therefore, we investigate the top prediction results. We rank the

predicted areas by the score of the classification models. In particu-

lar, we test the results for 𝑝@500 and 𝑟@500.

From Table 4, we observe that the top predictions have extremely

high precision (0.9+) in both Phase I and Phase II! The phenomenon

indicates that if any efforts can be used to successfully take care of

Table 4: Top-500 predictions of all methods. We examine
the result of predicted hazard areas to see if they should be
taken good care of in priority.

Phase I Phase II Phase III

Method p@500 r@500 p@500 r@500 p@500 r@500

Baseline1 0.1140 0.0093 0.0320 0.0060 0.0100 0.0074

Baseline2 0.1140 0.0093 0.0320 0.0060 0.0100 0.0074

NB 0.9200 0.0750 0.9700 0.1818 0.3720 0.2768

NB+RL 0.9220 0.0752 0.9760 0.1829 0.3840 0.2857

GBDT 0.8593 0.0701 0.9847 0.1845 0.5087 0.3785

GBDT+RL 0.8833 0.0720 0.9860 0.1848 0.5100 0.3795
MLP 0.8993 0.0733 0.9673 0.1813 0.2233 0.1662

MLP+RL 0.9020 0.0735 0.9660 0.1810 0.2760 0.2054

Table 5: Case studies on different cities: Beijing, Shanghai
and Chongqing are out of Hubei Province while Suizhou,
Huanggang and Jingmen are cities in Hubei Province.

Best Baseline Best Our Method

City p r F1 p r F1

Beijing 0.0801 0.9285 0.1467 0.4909 0.8334 0.6178
Shanghai 0.0935 0.6666 0.1623 0.2358 0.8586 0.3699
Chongqing 0.6511 0.7257 0.5936 0.7131 0.7833 0.7286
Suizhou 0.2977 0.688 0.4156 0.5697 0.748 0.6468

Huanggang 0.9147 0.8655 0.8894 0.9294 0.6365 0.7556

Jingmen 0.4415 0.4716 0.4561 0.7919 0.6618 0.721

these places, we might have a great chance to stop the local trans-

mission of COVID-19 coronavirus as soon as the confirmed cases

are spotted. During Phase III, the precision performance decreases.

We have analyzed the reason for the performance drop in Phase III:

government actions may have effective results and the expected

cases are therefore intervened.

4.5.4 Case Studies. We investigate how the model performs in

different cities with different situations. Hubei Province is the center

of COVID-19 outbreak in China with Wuhan as the capital. Since

most data in Wuhan are absent without locations, we select several

other representative cities inside and outside Hubei. We have a

general observation that the model will be better at predicting local

transmission cases than imported cases from other places.

One group of cities—Beijing, Shanghai and Chongqing—are lo-
cated outside Hubei. In cities outside Hubei, cases are mixed with

hybrid sources: both local transmission and imported cases. The

early cases from Hubei gradually cause massive local transmis-

sion. The situation is more severe in Suizhou and Jingmen, both of

which are cities located in Hubei Province. Another city in Hubei,

Huanggang, shows very high alert predictions and we note that

the baselines perform pretty well. We look into the data samples

in Huanggang and identify highly centralized community-level

outbreak, which explains why simple heuristics of distance-based

methods have excellent performance.

5 CONCLUSIONS AND FUTUREWORK
We build a warning system to predict hazard areas in order to

intervene the novel coronavirus COVID-19 epidemic transmission.
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We crawl the data from public information release, extract relevant

features based on empirical studies and conduct model learning.

We also incorporate a reinforcement learning module to facilitate

hyperparameter learning. The experiments have demonstrated that

the system is able to predict hazard areas of future cases, and have

better performance than heuristic baselines by various metrics.

We conduct additional experiments on ablation studies, which

indicate the feature groups have positive impacts on model per-

formance. In general, the demographic features and geographical

features are demonstrated to have stronger contribution because

they are closely related to disease transmission. Temporal and tem-

perature features are the least effective. Through the case studies

from different cities, we observe that our proposed method is better

at predicting local spread on the community-level. For the cities

with only imported cases, the prediction model is less effective.

Now the epidemic outbreak is still raging and people are trying

all efforts to intervene coronavirus pandemic. As our future work,

we will scale up the data size and adapt our model for more coun-

tries. It is the human fight against the virus, and hopefully we will

win the war against the COVID-19 in the near future.
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