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ABSTRACT
We study the retrieval-based multi-turn information-seeking dia-
logue systems, which are widely used in many scenarios. Most of
the previous works select the response according to the matching
degree between the query’s context and the candidate responses.
Though great progress has been made, existing works ignore the
contexts of the responses, which could provide rich information
for selecting the most appropriate response. The more similar the
query’s context and certain response’s context are, the more likely
they are to indicate the same question, and thus, the more likely
this response is to answer the query. In this paper, we consider the
response and its context as a whole session and explore the task of
matching the query’s context with the sessions. More specifically,
we propose to match between the query’s context and response’s
context and integrate the context-to-context matching with context-
to-response matching. Experiment results prove that our proposed
context-to-session method outperforms the strong baselines signif-
icantly.

CCS CONCEPTS
•Computingmethodologies→Discourse, dialogue andprag-
matics; • Information systems → Question answering.
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1 INTRODUCTION
Information-seeking dialogue system [7, 24, 27] aims at satisfying
the information needs of users through conversations. It has at-
tracted increasing attention due to its wide range of application
scenarios, such as customer services in online shopping and per-
sonal digital assistant [19, 30]. Different from the generation-based
open-domain dialogue systems [2, 20], which generate response
word by word, the retrieval-based information-seeking dialogue
systems select the response from a candidate set. The quality of
the selected response is a determining factor for the information-
seeking dialogue systems. Within the dialogue interactions with
users, the system takes the query’s context, which consists of the
previous utterances and the current query, as input to retrieve the
most appropriate response from the candidate response set. In this
paper, we improve the performance of the information-seeking
dialogue systems by utilizing the session information.

The canonical retrieval methods for selecting the superior re-
sponses require two steps (Figure 1): 1) Coarse-grained candidate
set construction: constructing a rough candidate set from the whole
dialog sessions. 2) Fine-grained selection: selecting the best re-
sponse from the candidate set. To be more specific, the first step is
a coarse-grained relevance searching process between the query’s
context and the response’s context (response’s history as in Table
1), which is usually accomplished by TF-IDF based methods for
efficiency [37]. The second step is a fine-grained reranking process
by computing the matching degree between the query’s context
and the response where most of the existing works focused on
[9, 21, 22, 26, 38].

Encouraged by the success of neural networks in natural lan-
guage processing tasks, in recent years, researchers have adopted
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Table 1: An example for the query’s context and the cor-
responding candidate session which is composed of the re-
sponse and response’s context. CUST stands for customer.
STAFF represents the customer service staff.

Query’s Context
CUST: Which kind of express do you use?
STAFF: EMS.
CUST: Can the package be handed over to me this week?

Response’s Context
CUST: Is there additional fee for package delivering?
STAFF: Nothing, Sir!
CUST: When will the package be delivered?

Candidate Response
STAFF: The product will be delivered within three days.

neural networks to perform fine-grained matching in the retrieval-
based dialogue systems. One line of research focuses on the context-
to-response matching (CRM) methods (the upper right part in Fig-
ure 1), modeling the relationship between the query’s context and
the response [3, 25, 40, 41]. However, these methods ignore the
response’s context, which may benefit the response selection tasks.
It is intuitional that if the response’s context is similar to the query’s
context, the corresponding response has a high probability to an-
swer the given query. Table 1 shows an example for better under-
standing. The query’s context and the response’s context in Table
1 are similar enough to conclude that the corresponding response
is appropriate even if not seeing the response.

Inspired by the aforementioned observation, we investigate how
to leverage the response’s contexts to help the response selection
task. We take the whole dialogue session into consideration and
introduce a context-to-session matching (CSM) model (the lower
right part in Figure 1). To be specific, we propose to match the
query’s context with the response’s context and response in the
candidate session respectively: context-to-context matching (CCM)
and context-to-response matching (CRM), and then integrate the
two kinds of matching representations to get the final matching
score. The response in the session with the highest score will be
selected as the final response.

To build a context-to-session matching (CSM) model, two main
issues need to be addressed. The first issue is how to match the
query’s context with the response’s context appropriately. Since the
query’s context and response’s context are both long sequences of
dialogue utterances, and utterances at different positions play differ-
ent roles, matching between query’s context and response’s context
is quite challenging. The second issue is how to effectively inte-
grate context-to-context matching and context-to-response match-
ing. In this paper, we propose to use graph attention network (GAT)
[32] with role-aware attention aggregation and a gating mechanism
to solve these two issues. GAT models the relationships between
the utterance pairs while the role-aware attention aggregates the
output of the GAT. The gating mechanism dynamically decides the
weight between CCM and CRM.

We compare our model with other competitive models. Experi-
mental results show that our model achieves the best performance,

Query's
Context TF-IDF

Dialog
Sessions

Step	1 Step	2

Candidate
Responses CRM

Candidate
Sessions CSM

Response

Response

Conventional	Retrieval	Dialog

Session-based	Retrieval	Dialog	(Ours)

Figure 1: Comparison between conventional retrieval dia-
logue system (black and red lines) and our proposed session-
based retrieval dialogue system (black and blue lines).

which verifies that CSM could benefit response selection. The code
and data are released. 1

In summary, the contributions of our paper are:
• To our best knowledge, our paper is the first study that
attempts to enhance response selection in the context-to-
session matching fashion (CSM), which presents a new line
of research in response selection in information-seeking
dialogue systems.

• We design a simple and effective model to perform CSM,
which models the query’s context relationships with the
response’s context and the response separately.

• For the many-to-many matching problem involved in the
context-to-context matching part of our CSM model, we
innovatively use the graph attention network to capture
the relationships among the utterance pairs and the role-
aware attention mechanism to aggregate these utterance
pairs’ representations.

The rest of this paper is organized as follows: we review related
work on retrieval-based dialogue systems and text matching in
Section 2. The task formulation and ourmodel structure is presented
in Section 3. Section 4 is about the dataset construction, experiment
settings, and baseline models. Detailed experimental results and
analysis are elaborated in Section 5, after which we conclude in
Section 6.

2 RELATEDWORK
This paper explores to utilize knowledge of the whole session to
boost the response selection task.

2.1 Retrieval-based Dialogue Systems
Most of the existing retrieval-based dialogue systems focus on the
context-to-response matching that matches the query’s context and
the response directly. Zhou et al. [44] feed the query’s context and
response into a Recurrent Neural Network (RNN) respectively and
measure the context-to-response relevance by the last hidden state
of the RNN. Wu et al. [37] propose the Sequential Matching Net-
work (SMN) which models the relationship between each utterance
in the query’s context and the response by a cross-attention ma-
trix. Zhou et al. [45] propose the Deep Attention Matching (DAM)

1https://github.com/fuzhenxin/Context-to-session-Matching-KDD2020
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Figure 2: Context-to-Session Matching (CSM). As an example, the query’s context and response’s context both only contain
three utterances. The context-to-context matching module is composed of the representation layer, interaction layer, and
interaction aggregation layer. S𝑖, 𝑗 , Rcc, and Rcr are all vectors.

model that encodes the query’s context and response through self-
attention. Cross-attention and 3-D convolution are also applied
to predict the matching degree in DAM. Tao et al. [28] propose
the Multi-Representation Fusion Network (MFRN) which considers
the query-to-response matching with multiple kinds of represen-
tations. MFRN encodes queries and responses from the view of
words, n-grams, and sub-sequences of utterances. Then it studies
how to fuse them in a deep neural network architecture. Tao et al.
[29] propose the Interaction over Interaction (IoI) model to make
utterance-response interaction go deep by stacking multiple inter-
action blocks. Different from these methods that only consider the
context-to-response matching and ignore the corresponding con-
text of the response, we investigate the context-to-session matching
problem where the response’s context is also considered.

2.2 Text Matching
The key point of the response selection task is text matching. Along
with the development of the neural networks, more and more re-
searchers employ RNN or Convolution Neural Network (CNN) for
the text matching tasks. These methods get the text representa-
tions and then manipulate those representations using techniques
like cross-attention mechanism [10]. Previous text matching works
mainly investigate the matching between two sentences (one-to-
one matching) or the matching between a sequence of several sen-
tences and one sentence (many-to-onematching), including Natural
Language Inference [4], Paraphrase Identification [12], Context-
response matching [37], and Information Retrieval [15]. However,
seldom have they explored the matching between two sequences of
sentences (many-to-many matching), which is a more challenging
task. In this paper, we propose tomatch between the query’s context
and response’s context, a many-to-many matching problem.

3 MODEL
In this section, we firstly introduce the task formulation in Sec-
tion 3.1. Then, we present the model overview in Section 3.2 for
better understanding. The attentive module adopted in our model

is described in Section 3.3. The context-to-context matching (CCM)
component and the context-to-response matching(CRM) compo-
nent are described in Section 3.4 and Section 3.5 respectively. Fi-
nally, the integration component for integrating the CCM and CRM
representation is presented in Section 3.6.

3.1 Task Formulation
Weassume a training set of size𝑁 , denoted as𝐷 = {(𝐶𝑞

𝑖
,𝐶𝑟

𝑖
, 𝑅𝑖 , 𝑙𝑖 )}𝑁𝑖=1,

where 𝐶𝑞

𝑖
is the 𝑖-th query’s context. 𝐶𝑟

𝑖
and 𝑅𝑖 are the response’s

context and response in the 𝑖-th candidate session respectively, and
𝑙𝑖 ∈ {0, 1} is the label denotes whether (𝐶𝑟

𝑖
, 𝑅𝑖 ) is the correct session

to match with𝐶𝑞

𝑖
. To be specific, the query’s context and response’s

context are both sequences of utterances (sentences), which can be
formulated as 𝐶𝑞 = {𝑆𝑞1 , · · · , 𝑆

𝑞

𝑇𝑞
} and 𝐶𝑟 = {𝑆𝑟1, · · · , 𝑆

𝑟
𝑇𝑟
}. 𝑇𝑞 and

𝑇𝑟 are the corresponding max turn number. Given a query’s context
𝐶
𝑞

𝑖
and a candidate session (𝐶𝑟

𝑖
, 𝑅𝑖 ), the model is trained to predict

𝑙𝑖 correctly.

3.2 Model Overview
Our model is designed for the context-to-session matching, which
is shown in Figure 2. Concretely, we divide the context-to-session
matching into context-to-context matching (CCM) and context-to-
response matching (CRM) to capture the session information from
two different perspectives: 1) CCM: measuring whether query’s
context and response’s context are asking the same question.We use
graph attention network and role-aware attention aggregation to
obtain the context-to-context matching representation (Section 3.4).
2) CRM: modeling the dialog pattern between the query’s con-
text and the response. In this paper, we use the IoI model [29] as
the context-to-response matching component, which has shown a
good performance (Section 3.5). The CCM representation and the
CRM representation are then combined through a gating mecha-
nism, see in Section 3.6.

In the following subsections, we first discuss the structure of the
attentive module which is a basic component of our method, and
then introduce the other parts in detail.
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3.3 Preliminary: Attentive Module
Inspired by the success of Transformer [6, 31], we adopt the at-
tentive module following previous work [29, 42, 45] to learn the
utterance representation. The attentive module is a variant of the
encoder of the Transformer with single-head attention. The at-
tentive module is composed of a single-head self-attention sub-
layer and a position-wise fully connected feed-forward sub-layer.
A residual connection [13] is employed around each of the two
sub-layers, followed by layer normalization [18]. It is abstracted as
𝑓att (Q,K,V) ∈ R𝑡×𝑑𝑘 , where Q ∈ R𝑡×𝑑𝑘 , K ∈ R𝑡×𝑑𝑘 and V ∈ R𝑡×𝑑𝑘
are matrices representing the query input, the key input, and the
value input respectively. 𝑡 is the sentence length and 𝑑𝑘 is the
dimension of the word embedding in this paper.

The detailed implementation of the attentive module: an atten-
tion function is first applied to map the query set Q and key-value
set pair {K,V} to an output. The output is the weighted sum of
the values where the weight assigned to each value is calculated
by the relevance between the query and the corresponding key. In
this paper, we adopt the scaled dot-product attention mechanism
following Vaswani et al. [31], which is formulated as:

Att(Q,K,V) = Softmax(QK
T√

𝑑𝑘

)V (1)

After the attention layer, a residual connection [13] with sum-
mation and layer normalization [18] is applied on Att(Q,K,V) to
get an intermediate representation X in order to obtain better fused
representation:

X = 𝑓norm (Q + Att(Q,K,V)) (2)

Then, a position-wise feed-forward network (FFN) is applied to
each position of the intermediate representation separately and
identically. The FFN with ReLU [17] activation is denoted as:

X′
𝑖 = max(0,X𝑖W1 + b1)W2 + b2 (3)

where W1, b1,W2, and b2 are learnable parameters. X𝑖 and X′
𝑖
are

the 𝑖-th row of X and X′ respectively.
Finally, the summation, applied with layer normalization, of

intermediate representation X and X′ is the final output:

𝑓att (Q,K,V) = 𝑓norm (X + X′) (4)

3.4 Context-to-Context Matching (CCM)
The context-to-context matching module is composed of a represen-
tation layer (Section 3.4.1), an interaction layer (Section 3.4.2), and
an interaction aggregation layer (Section 3.4.3). The representation
layer is designed to obtain an utterance level representation. The
interaction layer is for securing the interactionmatching representa-
tion between two utterances by cross-attention mechanism which
is followed by a convolution layer. The interaction aggregation
layer uses the graph attention network to model the relationships
among the utterance pairs, and a role-aware attention mechanism is
introduced to aggregate the interaction matching representations.

3.4.1 CCM: Representation Layer. The representation layer is de-
signed to get self-attentive utterance representation. Figure 3 shows
the representation layer and the following interaction layer. We
employ the aforementioned attentive module to encode the input
utterance 𝑆 into the utterance representation U ∈ R𝑡×𝑑𝑘 . Take the

Figure 3: The representation layer and the interaction layer
in the context-to-context matching module. 𝑆𝑞

𝑖
is the 𝑖-th ut-

terance of the query’s context and 𝑆𝑟
𝑗
is the 𝑗-th utterance of

the response’s context.

𝑖-th utterance in the query’s context as an example. First, the utter-
ance 𝑆𝑞

𝑖
is transformed into word embedding representation E𝑞

𝑖
by

looking up the word embedding table. Following Vaswani et al. [31],
position embedding is added to the word embedding to identify the
absolute position of the tokens in the sequence. Then we get the
position-aware word representation Ẽ𝑞

𝑖
∈ R𝑡×𝑑𝑘 , which is fed into

the attentive module to get the utterance representation U𝑞

𝑖
:

U𝑞

𝑖
= 𝑓att (Ẽ𝑞𝑖 , Ẽ

𝑞

𝑖
, Ẽ𝑞

𝑖
) (5)

The representation layer can be seen as self-attention within the
utterance, which provides integration of the local information. To
obtain deep utterance representation, we adopt a multi-layer atten-
tive module rather than a single layer.

3.4.2 CCM: Interaction Layer. After getting the utterance repre-
sentation, following Zhou et al. [45], we employ the cross-attention
mechanism which has shown great success in text matching [4, 11]
to measure the relevance between utterances. The following two
kinds of cross-attention mechanisms are adopted: (1). the cross at-
tention between utterances representation from the representation
layers:M𝑖, 𝑗 . (2) the cross attention between attentive representation
of utterances:M′

𝑖, 𝑗 .
(1) U𝑞

𝑖
andU𝑟

𝑗
are the utterance representations of the 𝑖-th utterance

in the query’s context and the 𝑗-th utterance in the response’s
context. For the cross-attention matrixM𝑖, 𝑗 ∈ R𝑡×𝑡 between U𝑞

𝑖
and U𝑟

𝑗
, each element of it is calculated by Equation 6, where

{U𝑞

𝑖
}𝑎 is the 𝑎-th row in U𝑞

𝑖
, and {U𝑟

𝑗
}𝑏 is the 𝑏-th row in U𝑟

𝑗
.

M𝑎,𝑏
𝑖, 𝑗

= {U𝑞

𝑖
}T𝑎 · {U𝑟

𝑗 }𝑏 (6)

(2) U𝑞

𝑖
and U𝑟

𝑗
are also fed into the attentive model to obtain the

attentive representation:

H𝑞

𝑖
= 𝑓att (U𝑞

𝑖
,U𝑟

𝑗 ,U
𝑟
𝑗 ) (7)

H𝑟
𝑗 = 𝑓att (U𝑟

𝑗 ,U
𝑞

𝑖
,U𝑞

𝑖
) . (8)

A new cross-attention matrix M′
𝑖, 𝑗 is generated by the cross-

attention between the attentive sentence representationH𝑞

𝑖
and

H𝑟
𝑗
as in Equation 9.

M′𝑎,𝑏
𝑖, 𝑗

= {H𝑞

𝑖
}T𝑎 · {H𝑟

𝑗 }𝑏 (9)
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After that, the two cross-attention matrices which represent
different views of the cross-attention are stacked to form the final
cross-attention representation between the two utterances.

F𝑖, 𝑗 = 𝑓stack ({M𝑖, 𝑗 ,M′
𝑖, 𝑗 }) (10)

Following Wu et al. [37] and Wang et al. [34], we adopt a 2-layer
2-D CNN to extract matching features from the attention matrix
F𝑖, 𝑗 . The output of the CNN are flattened and mapped into low-
dimension vector representation S𝑖, 𝑗 . S𝑖, 𝑗 indicates the interaction
feature between the 𝑖-th utterance in query’s context and the 𝑗-th
utterance in response’s context:

S𝑖, 𝑗 = 𝑓flatten (𝑓CNN (F𝑖, 𝑗 )) (11)

3.4.3 CCM: Interaction Aggregation. After the interaction layer, we
obtain the interaction matching representations {S𝑖, 𝑗 }

𝑇𝑞 ,𝑇𝑟
𝑖=0, 𝑗=0. The

key problems to get the context-to-context matching representation
are: 1) how to model the relationships between elements in S and
2) how to aggregate them. In this part, we employ graph attention
network and role-aware attention aggregation to solve the two
problems respectively.

Considering how to model the relationships between elements,
it should be noted that S is a matrix of vectors. So, it is nontrivial
to use the traditional encoding methods such as RNN, Transformer
encoder, whose input is always a sequence of vectors. The canonical
encoding methods cannot well capture the interacted information
among the elements in S. Instead, we treat the matching represen-
tation S as an undirected graph. The graph network technologies
can help us model the relationships between elements in S. Each
element of S is a node in the graph. Two nodes are connected to
each other when they are neighbors in S. For example, the neigh-
bors of S𝑖, 𝑗 are {S𝑖−1, 𝑗 , S𝑖+1, 𝑗 , S𝑖, 𝑗−1, S𝑖, 𝑗+1} as in Figure 2. It means
that two utterance pairs are connected when the two pairs own
the same query utterance and their response’s context utterances
are neighbors, and vice versa. We take the graph attention network
(GAT) to process the constructed graph and model the relationships
in the graph. GAT has shown great success in graph processing
[5, 14, 35]. It stacks layers in which nodes are able to attend over
their neighborhoods’ features. In each layer, it assigns different
weighting coefficients to different nodes within a neighborhood to
obtain a new node representation.

The representation of the node in the 𝑙-th layer is represented
as G𝑙

𝑖, 𝑗
, which corresponds to the matching relationship between

𝑖-th utterance in query’s context and 𝑗-th utterance in response’s
context. The representation G0

𝑖, 𝑗
of the first layer is initialized by

S𝑖, 𝑗 . For the following layers, the nodes is computed as follows:
1) the similarity between G𝑙

𝑖, 𝑗
and G𝑙

𝑎,𝑏
is first calculated as the

attention weight in the 𝑙-th layer:

𝛼𝑙
𝑖, 𝑗,𝑎,𝑏

=
exp(LeakyReLU(MLP𝑔 ( [G𝑙

𝑖, 𝑗
,G𝑙

𝑎,𝑏
])))∑

𝑐,𝑑∈N𝑖,𝑗
exp(LeakyReLU(MLP𝑔 ( [G𝑙

𝑖, 𝑗
,G𝑙

𝑐,𝑑
])))

, (12)

where N𝑖, 𝑗 represents the neighbours of the node {𝑖, 𝑗} and MLP𝑔
is a multi-layer perceptron (MLP) whose output is a scalar. 2) The
next layer representation of node {𝑖, 𝑗} is calculated by aggregating

the representations of its neighbours:

G𝑙+1
𝑖, 𝑗,𝑎,𝑏

= Sigmoid(
∑

𝑎,𝑏∈N𝑖,𝑗

𝛼𝑙
𝑖, 𝑗,𝑎,𝑏

W𝑙G𝑙
𝑎,𝑏

), (13)

whereW𝑙 is the corresponding input linear transformation’s weight
matrix. The aggregation is controlled by the calculated attention
weights 𝛼𝑙

𝑖, 𝑗,𝑎,𝑏
. The aggregation learns to dynamically fuse repre-

sentations of its neighbours, consequently, to discover and model
the relationships between the matching representations.

Different from standard graph attention network, for each node,
we concatenate the output of each layer as the final output to cap-
ture different level representations: A𝑖, 𝑗 = [G1

𝑖, 𝑗
, · · · ,G𝐿

𝑖,𝑗
], where

𝐿 is the number of layers for GAT. The processing phrase of GAT
can be abstracted as:

A = 𝑓GAT (S) . (14)

A has the same form with S. A𝑖, 𝑗 is also a vector. Due to the page
limitation, more details on GAT can be found in Veličković et al.
[32].

After GAT layer, we need to aggregate {A𝑖, 𝑗 }
𝑇𝑞 ,𝑇𝑟
𝑖=0, 𝑗=0 to obtain

the context-to-context matching representation. A simple way to
aggregate them is to take the element-wise mean and max pooling
over them. Then a multi-layer perceptron (MLP) is used to get the
context-to-context matching representation Rcc. However, not all
utterance pairs should be treated equally. The utterances in different
positions show different roles and importance. Inspired by such
observation, we design the role-aware attention mechanism which
takes the position and speaker information into consideration to
aggregate the interaction representations:

We define the role embedding as E ∈ R𝑇×𝑑𝑝 where 𝑇 is the max
turn number of the context2 and 𝑑𝑝 is the dimension of the role
embedding. Because in the odd positions the speaker is customer
service staff, and in the even positions the speaker is customer, the
role embedding also contains speaker information. The role-aware
attention is formulated as:

𝛽𝑖, 𝑗 = MLP𝑟 ( [A𝑖, 𝑗 , E𝑖 , E𝑗 ]) (15)

A𝑎 =

𝑇𝑞∑
𝑖=0

𝑇𝑐∑
𝑗=0

A𝑖, 𝑗

exp(𝛽𝑖, 𝑗 )∑𝑇𝑞
𝑎=0

∑𝑇𝑟
𝑏=0 exp(𝛽𝑎,𝑏 )

(16)

Amax = Max-pooling({A𝑖, 𝑗 }
𝑇𝑞 ,𝑇𝑟
𝑖=0, 𝑗=0) (17)

Amean = Mean-pooling({A𝑖, 𝑗 }
𝑇𝑞 ,𝑇𝑟
𝑖=0, 𝑗=0) (18)

A𝑝 = [Amax,Amean,A𝑎] (19)

where [, ] denotes concatenation, E𝑖 ∈ R𝑑𝑝 and E𝑗 ∈ R𝑑𝑝 are the
𝑖-th and the 𝑗-th row of the role embedding E which provides the
global attention information indicating the position and speaker
information of the utterances in the query’s context and response’s
context. The output of MLP𝑟 is a number which is used to calculate
the attention weight. E is randomly initialized and tuned in the
same way with other parameters in this model. A𝑖, 𝑗 provides the
case level attention and it can dynamically influence the attention
weight. The importance of different utterance pairs are shown in
the analysis part.
2𝑇 ,𝑇𝑞 , and𝑇𝑟 are all the same in this paper.
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The overall process of the context-to-context matching module
is abstracted as:

Rcc = 𝑓cc (𝐶𝑞,𝐶𝑟 ) = MLPcc (A𝑝 ) (20)

3.5 Context-to-Response Matching (CRM)
For the CRM module, which has been well studied, we adopt the IoI
model here. The overall process of CRM is: Rcr = 𝑓cr (𝐶𝑞, 𝑅), where
Rcr is the output of the last layer of the final MLP in IoI and it has
the same dimension with Rcc in this paper. Besides, the essential
local loss of IoI which supervises blocks directly is also added to
our final loss for fair comparison and the prediction score of each
layer is also added to the final prediction score [29]. Inspired by
IoI, the loss and prediction score of CRM are also added to CSM to
strength the context-response matching which is more important
as discussed in the Result Section. More details on IoI can be found
in Tao et al. [29]. One of the advantages of our model is that the
CRM module is configurable which can be replaced by the new
state-of-the-art CRM models to improve the performance.

3.6 Matching Representation Integration
After getting the CCM representation Rcc and the CRM representa-
tion Rcr, we need to integrate them to predict the final matching
score. How to balance the weight between Rcc and Rcr is crucial
since in some cases the context-context pair is similar enough to pre-
dict whether the corresponding response is an appropriate response,
however, in other cases, the context-to-response matching plays a
more decisive role. So, we adopt the gating mechanism to integrate
the two matching representations into the final context-to-session
matching representation Rcs (𝛾 is the weighting coefficient):

𝛾 = Sigmoid(MLP𝑔 ( [Rcc,Rcr])) (21)
Rcs = 𝛾Rcc + (1 − 𝛾)Rcr (22)

Finally, an MLP with sigmoid activation is applied on the CSM
representation Rcs to predict the final matching score. The CSM
model is abstracted as 𝑓cs (𝐶𝑞,𝐶𝑟 , 𝑅) = MLP(Rcs). The model is
trained using the cross-entropy loss.

4 EXPERIMENT SETUP
In this section, we introduce our experiment setup. Section 4.1 is
about the datasets we use and their construction methods. Experi-
mental settings is detailed in Section 4.2. The baselines we use are
introduced in Section 4.3. We also describe the evaluation metrics
in Section 4.4.

4.1 Dataset
Original Dataset. To test our CSMmodel, we conduct experiments
on the E-commerce dialogue corpus [43]. This corpus contains real-
world dialogues between customers and customer service staffs
from Taobao3. It contains 500,000 positive context-response pairs
and 500,000 negative context-response pairs. We did not conduct
experiments on the open-domain dataset because when construct-
ing the context-session pairs, a response needs to have multiple
types of contexts (query’s context and response’s context). With
this requirement, the open-domain dialogue corpus is unsuitable

3https://www.taobao.com/

Algorithm 1 Context-session pairs construction. The negative
pairs construction is not shown in the pseudo-code.
1: 𝐶𝑅: All the training context-response pairs.
2: 𝐶𝑆 = ∅: Context-session pairs.
3: for 𝑐, 𝑟 in 𝐶𝑅 do
4: 𝐶𝐶=FindCorredpondingContext(𝑟 ) ⊲ Find the contexts

whose response is 𝑟 .
5: if |𝐶𝐶 | > 0 then
6: 𝑐𝑟 = TF-IDF(𝑐 , 𝐶𝐶) ⊲ Find the most similar context to 𝑐

in 𝐶𝐶 .
7: 𝐶𝑆 = 𝐶𝑆 ∪{{𝑐, 𝑐𝑟 , 𝑟 }} ⊲ 𝑐 is the query’s context, 𝑐𝑟 is

the response’s context, and 𝑟 is the response. 𝑐𝑟 and 𝑟 compose
the session.

8: end if
9: end for
10: Return 𝐶𝑆

since there are only the dull and useless responses that are corre-
sponding to multiple contexts. The E-commerce dialogue corpus
for information-seeking dialogue fits our requirement well. The
service staff of E-commerce platform usually use the same response
to answer the query whose context locate in the same domain. For
instance, a response about pre-defined after-sale policy can answer
multiple types of queries related to customers’ after-sale concerns.
We compose the following training set and two kinds of test set.
Dataset Construction: TestRandNegCand. To train CSMmodel,
we construct the context-session pairs based on the positive context-
response pairs. For each context-response pair, we need to find
a response’s context to form the {query’s context, response and
response’s context} pair, i.e., the context-session pair. Specifically,
we firstly collect at most 𝑛 contexts whose response is the same
with the response from the whole context-response training pairs as
the coarse candidate response’s context set 𝐶𝐶 4. Then, we rerank
response’s contexts in𝐶𝐶 by the TF-IDF score between the element
of this set with the query’s context. We select the element with the
highest score as the response’s context to avoid that the query’s
context and the selected response’s context are too dissimilar to
train the CCM module. The context-response pairs are dropped
when we can not find the coarse candidate response’s context set
𝐶𝐶 . 𝑛 is set to 20 for efficiency.

Finally, we get 92,945 positive context-session pairs. For each
query’s context, we randomly select a session as the negative can-
didate session. All the positive and negative context-session pairs
are divided into train, validation, and test set with size 181,890,
20,000 and 20,000. We call this test set TestRandNegCand (Random
Negative Candidate). For each query’s context in validation and test
set, we randomly sample 9 negative candidate sessions. The pseudo-
code of the construction process and data analysis are shown in
Algorithm 1 for better understanding.
Dataset Construction: TestRetrvCand. In order to verify the
effectiveness of our model in practical scenarios, we construct an-
other test set called TestRetrvCand (Retrieved Candidate) where the
response’s contexts in the negative candidate sessions are stronger

4The coarse candidate response’s context set does not contain the corresponding
query’s context.
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than the randomly sampled contexts. Concretely, TestRetrvCand
contains 1,000 query’s contexts and each query’s context has 10
response’s contexts which are retrieved by TF-IDF from all the
training set that are the most similar with the query’s context. The
retrieved context and its response constitute the candidate session,
forming the context-session pair. We do not know whether the
response of the retrieved session is an appropriate response. So we
employ human annotators to label the responses. Three annotators
are asked to label each case and the label most of them choose is
treated as the final label. After filtering the cases which have no
appropriate response, there are 8,840 context-session pairs left.
Data analysis. To better understand the motivation of dataset con-
struction, we calculate the data distribution in terms of repeatability.
The construction of our training data and TestRandNegCand relies
on the assumption that some contexts correspond to the same re-
sponse. 98,782 responses have one context. 10,256 responses have
more than 2 contexts. More specifically, these 10,256 responses
have 118,606 corresponding contexts totally. Therefore, the dataset
we constructed contains enough context-session pairs to train our
models.

To the best of our knowledge, our released test set is the first to
select the response from the level of dialogue sessionswhich contain
both the response’s context and response. The way to construct the
candidates of TestRetrvCand via TF-IDF is more practical.

4.2 Experimental Settings
Weuse Adam [16] optimizer with learning rate 0.0001 and batch size
100 to optimize the parameters. The word embedding dimension is
200. And we pre-train the word embeddings through GloVe [23].
The embeddings are tuned during the model training to get better
performance. The vocabulary size is 36,105 which covers all the
words in the training set. The max turn number of contexts is 5 and
the max utterance length is 20, which is sufficient to cover most of
the turns and words in the corpus. We use padding to handle the
various lengths of the text. The best performing checkpoint on the
validation set is selected for testing according to P10@1.

The dimension 𝑑𝑝 of the role-aware representation is 25 and the
dimension of the matching representation Rcc and Rcr are both 50.
The number of layers of the attentive module in the representation
layer is 3. The kernel size of the 2-D convolution is (3, 3) with stride
size 1. The channel size of the convolution operation is 32 for the
first layer and 16 for the second layer. For the max pooling of the
CNN model, the pool size is (3, 3) with stride size 3. For GAT, the
number of layers is 4 and the dimension is 128 for the internal
nodes.

4.3 Baselines and Models
To better evaluate the performance of our proposed methods, we
consider three types of baselines and models: the conventional
context-to-responsematching (CRM)methods, our proposed context-
to-sessionmatching (CSM)model, and the ablated version of CCM to
analyze the effect of our proposed context-to-contextmatching (CCM).
CRM. DAM and IoI are the strong baselines for the CRM task
which do not take response’s context into consideration. They are
represented as CRM (DAM) and CRM (IoI).

CCM. As one of the ablation studies, we evaluate the performance
of CCM. We also conduct ablation studies for the components in
CCM. “CCMw/o Role” works as CCMwithout role-aware attention
integration, which means there is no E𝑖 and E𝑗 in Equation 15.
“CCM w/o GAT” means there is no GAT, and S are fed into the role-
aware attention layer directly. Besides, to verify the effectiveness
of our proposed CCM model, we also compare our results with
CCM (Con) and CCM (BiMPM). They concatenate the utterances
in the context and treats the context as one sentence. CCM (Con)
model can be seen as a special case of our proposed CCM that the
number of turns is 1. CCM (BiMPM) takes BiMPM [36] to calculate
the matching degree between the concatenated contexts.
CSM. CSM denotes our proposed context-to-session matching
model. In addition, CSM (CR-Con) works as a baseline which con-
catenates the candidate session into one sentence. Then an IoI
model is applied to model the query’s context and the concatenated
session.

4.4 Evaluation Metrics
Following previous work [8, 24, 37, 39], we evaluate the models in
terms of MRR (Mean Reciprocal Rank) [33], MAP (Mean Average
Precision) [1], P10@1, R10@1, R10@2, R10@5 and R2@1, which are
all frequently-used metrics in response selection tasks. R𝑛@𝑘 calcu-
lates the recall of the true positive responses among the 𝑘 selected
candidates from 𝑛 available candidates, and P𝑛@𝑘 refers to the pre-
cision. MRR is adopted to evaluate TestRandNegCand where there
is only one ground-truth in the candidates. For the TestRetrvCand
where a query’s context has multiple right responses, we employ
MAP metric.

5 RESULTS AND ANALYSIS
In this section, we present the experimental results and give our
analysis. Section 5.1 is to compare our CSMmodel with its CCM and
CRM counterparts. The ablation study, which is used to verify the
effectiveness of proposed GAT and role-aware attention compo-
nents, is introduced in Section 5.2. The discussion of the context-
to-context matching module’s role is given in Section 5.4. To better
demonstrate the usefulness of different utterances in the dialogue
session, the analysis of role-aware attention is given in Section 5.5.

5.1 CSM v.s. CRM v.s. CCM.
The evaluation results and ablation studies are shown in Table 2.
Compared with the baselines including CRM and CCM, we can
find that our proposed CSM model achieves the best performance
across most of the evaluation metrics on the two test sets. On the
TestRetrvCand test set which is more reliable, CSM gains 0.08 im-
provement on P10@1 and 0.026 improvement on MAP. It reflects
the promising prospect of applying our proposed context-to-session
matching approach into industrial retrieval-based dialogue systems.
As two important parts of CSM, CCM and CRM can work inde-
pendently. The result of CCM indicates that CCM provides useful
evidence for response selection. The comparison between CRM and
CCM shows that CRM outperforms CCM. Possible explanations
for the result may be: 1) CRM ranks response directly. However,
CCM model cannot get access to the responses. 2) there is more
data to train CRM model.
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Table 2: Results for test set TestRandNegCand and TestRetrvCand. The results of CSM are significant with p-value < 0.05
measured by the Student’s paired t-test over the baselines.

Models TestRandNegCand TestRetrvCand

MRR R10@1 R10@2 R10@5 R2@1 MAP P10@1 R10@1 R10@2 R10@5

CCM (Con) 0.7366 0.6650 0.8225 0.9525 0.9015 0.5666 0.4446 0.1333 0.2534 0.5821
CCM (BiMPM) 0.7520 0.6865 0.8345 0.9605 0.9150 0.5749 0.4672 0.1422 0.2586 0.5850
CCM w/o Role 0.7536 0.6835 0.8285 0.9620 0.9085 0.5656 0.4389 0.1297 0.2557 0.5784
CCM w/o GAT 0.7584 0.6920 0.8470 0.9695 0.9195 0.5932 0.4729 0.1421 0.2792 0.6225
CCM 0.7732 0.7110 0.8530 0.9752 0.9290 0.5998 0.4977 0.1554 0.2945 0.6078

CRM (DAM) 0.8087 0.7540 0.9160 0.9920 0.9525 0.6484 0.5023 0.1592 0.3122 0.6935
CRM (IoI) 0.8308 0.7855 0.9315 0.9945 0.9610 0.6725 0.5430 0.1765 0.3474 0.7193

CSM (CR-Con) 0.6364 0.5360 0.7260 0.9355 0.8690 0.6126 0.4717 0.1412 0.2865 0.6487
CSM 0.8456 0.8045 0.9380 0.9905 0.9635 0.6986 0.6222 0.2003 0.3767 0.7168

5.2 CCM ablation study.
TheGAT and role-aware attention are important parts of CCMmodel,
thus we take the ablation study to verify their effectiveness. Results
show that P10@1 drops 0.248 when ablating the GAT, which proves
that GAT can learn and model the relations of the matching rep-
resentations. Additionally, P10@1 drops 0.588 when ablating the
role-aware attention. This shows that the role-aware attention can
efficiently aggregate the matching representations.

5.3 Comparison with other CSM baseline.
CSM (CR-Con) performs worst across the metrics. CSM (CR-Con)
treats the response’s context and response as one sentence. The
results show the necessity to model the context-to-context match-
ing and context-to-response matching separately. Because the two
parts correspond to different aspects: similar question detection and
question-response dialog pattern detection. CSM (CR-Con) does
not have the ability to separate these two aspects.

5.4 Why do we need context-to-context
matching when the candidates are retrieved
by TF-IDF?

In the real-world scenario, the candidate sessions are retrieved by
TF-IDF based on the query’s context, which is already a context-
to-context matching. Why do we bother to model the context-to-
context relationship with a new deep matching network? The rea-
sons lie in two aspects. The first reason is that since deep matching
has shown great success in text matching, it may improve the per-
formance of context-to-context matching compared with TF-IDF.
Another reason is that TF-IDF does not take { the position, speaker
information, relationships between utterances} into consideration.
The results in Table 2 verify that the position and speaker informa-
tion are helpful to CCM and the neural network based CCM works
fine. These are also the reasons why the response’s context in CSM
helps response selection.

5.5 Analysis on role-aware attention.
We design an interaction aggregation layer (Section 3.4.2) to aggre-
gate the matching representations of utterance pairs. The proposed

Figure 4: Attention weight for the role-aware attention. The
superscript 𝑖 means the utterance is the 𝑖-th utterance of the
context.

role-aware attention assigns different weights to the utterance pair
matching representations. We calculate the mean of the attention
weights across the test set TestRetrvCand as in Figure 4. The at-
tention weights show that: 1) The CUST−5-CUST−5 pair shows the
highest score 0.1720. It means that the last utterance which is clos-
est to response is the most important. 2) The scores of CUST-CUST
pairs are generally larger than CUST-STAFF and STAFF-STAFF
pairs. It indicates that what the customer asked is more impor-
tant. This result is in agreement with our common sense: since
information-seeking dialogue systems aim at satisfying informa-
tion needs, what the customer asked is relatively more important
than what has been answered. The analysis reflects the necessity
to adopt role-aware attention.

6 CONCLUSION
In this paper, we propose a novel context-to-sessionmatching (CSM)
approach for the response selection task in information-seeking dia-
logue systems. Comparedwith its conventional context-to-response
matching counterparts, this type of CSM approach takes full advan-
tage of the knowledge of whole sessions: the response’s context in
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the dialogue session can help choose the appropriate response by
measuring whether the two query’s context and response’s context
are discussing the same question. Furthermore, the graph attention
network and role-aware attention in our proposed CSM model can
help to model and aggregate the matching representations between
query’s context and response’s context. We are surprised by the
extent of improvement achieved by our proposed CSM approach
and are excited about its future in response selection tasks.
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