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ABSTRACT
Given a user query, traditional multi-turn retrieval-based dialogue
systems first retrieve a set of candidate responses from the histor-
ical dialogue sessions. Then the response selection models select
the most appropriate response to the given query. However, pre-
vious work only considers the matching between the query and
the response but ignores the informative dialogue session in which
the response is located. Nevertheless, this session, composed of the
response, the response’s history and the response’s future, always
contains valuable contextual information which can help the re-
sponse selection task. More specifically, if the current query and a
response’s history both refer to the same question, we can conclude
that this response is quite likely to answer this query. As for the
response’s future, it can always provide contextual hints and supple-
mentary information thatmight be omitted in the response. Inspired
by such motivation, we propose a query-to-session matching (QSM)
framework to make full use of the session information: matching
the query with the candidate session instead of the response only.
Different from the previous work which ranks response directly,
the response in the session with the highest query-to-sessionmatch-
ing score will be selected as the desired response. In our proposed
framework, the query, history, and future are all sequences of utter-
ances, which makes it necessary to model the relationships among
the utterances. So we propose a novel dialogue flow aware query-
to-sessionmatching (DF-QSM) model. The dialogue flows model the
relationships among the utterances through a memory network.
To our best knowledge, our paper is the first work to utilize both
the response’s history and future in the response selection task.
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The experimental results on three multi-turn response selection
benchmarks show that our proposed model outperforms existing
state-of-the-art methods by a large margin.
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1 INTRODUCTION
Human-machine interaction through conversations has attracted
increasing attention in recent years due to its wide applications.
Some chatbots have been developed to serve human and make life
intelligent: Microsoft XiaoIce [38] for social chats, Alibaba AliMe
[17] for customer service, etc. There are mainly two types of chat-
bots: the generation-based and the retrieval-based. The former one
generates response through language generation methods [23, 28],
while the latter one retrieves the response from a large candidate
set [25, 30]. In this paper, we focus on multi-turn retrieval-based dia-
logue systems which can produce informative and fluent responses.

A multi-turn retrieval-based dialogue system takes the query,
which consists of the previous utterances and the current question,
as input to retrieve the most appropriate response from a candidate
set. The mainstream methods for retrieval-based dialogue systems
comprise two steps: (1) constructing a rough candidate set from the
whole corpus; (2) selecting the best response from the candidate set.
Concretely, the first step is a coarse-grained relevance searching
process between the query and the candidate conversations, which
is usually accomplished by TF-IDF for efficiency [32]. The second
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Figure 1: Example for the query context and the correspond-
ing candidate session which is composed of the response, re-
sponse’s history, and response’s future. CUST stands for cus-
tomer. STAFF represents the customer service staff.

step is a fine-grained reranking process by computing the matching
degree between the query and the candidate responses [9, 19, 39].

The aforementioned systems produce the response in the re-
sponse level, in which they retrieve rough candidate responses
in the first step and conducts the query-to-response matching in
the second step. However, we should keep in mind that the candi-
date response never exists in isolation. In particular, the candidate
response is located in a dialogue session as shown in Figure 1. In
addition to the response, there are response’s history (utterances
before the response) and response’s future (utterances after the re-
sponse) in the candidate session. We can observe that the response’s
history and future are all helpful information for the response se-
lection task. To be specific: (1). For the response’s history, if the
query 𝑄 and response’s history 𝐻 both imply the same question,
we will have more confidence to conclude that this response 𝑅 can
answer the current query well [6]. From the example in Figure 1,
we can see that both the query and the response’s history are about
the duration of the discount. And the response after the history,
which answers the question about express choice, fits the query
quite precisely; (2). As for the response’s future 𝐹 , from the sub-
tle hints provided by 𝐹 (“other discount after tomorrow”), we can
safely back-infer that the response may talk about the discount
time information, which matches the query well. In particular, this
type of supplementary information provided by the response’s fu-
ture can also help us in the response selection task. Inspired by
such motivation, we propose the query-to-session matching (QSM)
framework which considers the whole candidate session instead of
the single response.

As shown in Figure 1, the conventional query-to-response match-
ing (QRM) framework only copes with the matching between one
sequence of utterances and one response. Our query-to-session
matching framework, on the other hand, involves the matching
between several sequences of utterances. The query, the history,
and the future are all sequences of utterances. Thus, there are two
key problems in this setting: (1). different utterances in the ses-
sion contribute differently in the query-to-session matching task;
(2). not all information in the utterances help the matching task. To
solve such problems, we propose a novel memory network named
dialogue flow to gracefully extract useful information from the
session’s utterances. More specifically, for each utterance, dialogue

flow dynamically decides {how much information, which aspect of
the information} should be written into the memory.

We conduct experiments on three benchmarks for the response
selection task: Ubuntu Dialogue Corpus, Douban Conversation
Corpus, and E-commerce Dialogue Corpus. The results show that
our proposed dialogue flow aware query-to-session matching model
achieves state-of-the-art results. The model ablation results and the
session ablation results indicate the effectiveness of each proposed
component and verify the usefulness of the response’s history and
future. The code is released1. The contributions of our paper are:
(1) To our best knowledge, our paper is the first work to propose

the query-to-sessionmatching framework which provides a new
perspective for the response selection task.

(2) We propose to use a memory-based network named dialogue
flow to cope with the knotty matching problem between the
sequences of utterances, which can precisely extract useful and
related information from the utterances in the dialogue session.

(3) Detailed experiments show our proposed dialogue flow aware
query-to-session matching model significantly outperforms the
conventional query-to-response matching approaches and our
proposed other strong query-to-session matching baselines.

(4) We conduct empirical experiments to quantitatively evaluate
the role of the history and future in the dialogue session and
the influence of the session size.

2 RELATEDWORK
2.1 Retrieval-based Dialogue Systems
This paper explores a novel query-to-session framework for the re-
sponse selection task in multi-turn retrieval-based dialogue systems.
We first introduce some literature work about the retrieval-based
dialogue systems. Most of the existing multi-turn retrieval-based
dialogue systems focus on the query-to-response matching that
matches the query and the response directly. Wu et al. [32] pro-
pose the Sequential Matching Network (SMN) which models the
relationship between each utterance in the query and the response
by a cross-attention matrix. Zhou et al. [40] propose the Deep At-
tention Matching (DAM) model that encodes the query and the
response through self-attention. Cross-attention and a 3-D convo-
lution are also applied to predict the matching degree in DAM. Tao
et al. [26] propose the Interaction over Interaction (IoI) model to
make utterance-response interaction go deep by stacking multiple
interaction blocks. Most of the aforementioned models are com-
posed of the representation layer, interaction layer, and interaction
aggregation layer. The representation layer encodes the utterances,
which is usually accomplished by recurrent neural network (RNN)
or self-attention. The interaction layer takes technologies like cross-
attention to obtain the interaction representation between the ut-
terances in the query and the response. The interaction aggregation
layer aggregates the interaction representations through RNN or
convolutional neural network (CNN).

Different from these methods that only consider the query-to-
response matching but ignore the informative history and future of
the response, we investigate the query-to-session matching problem
where the history and future are considered. Fu et al. [6] propose the

1https://github.com/fuzhenxin/Query-Session-Matching-CIKM2020
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Figure 2: Model Overview. For simplicity, the query contains three turns, while the history and future contain only two turns.
We only show the global dialogue flow and omit the local dialogue flow for a clear demonstration. The representation of the
query, the history, the future are fed into the global dialogue flow (see these three dashed curves). We only show the whole
global dialogue flow’s updating of the first step in the query as an example.

context-to-session matching which utilizes the response’s history
only but ignores the informative response’s future in information-
seeking dialogue systems. Besides, our proposed model is verified
in three corpora including information-seeking conversations and
open-domain dialogues.

Another line of research considers external knowledge for the
response selection task. Young et al. [34] propose to promote re-
sponse selection with a commonsense knowledge base. Yang et al.
[33] propose to help the response selection with external knowl-
edge through pseudo-relevance feedback and QA correspondence
knowledge distillation. Qu et al. [22] propose to understand and
characterize how people interact in information-seeking conver-
sation through user intent. Aliannejadi et al. [1] explore how to
use the utterance relevance in the query through human-annotated
labels. Different from these work which need external information
and additional human annotations, our proposed query-to-session
matching framework only utilizes the built-in history and future
utterances in the dialogue sessions.

2.2 Text Matching
Since our framework is located in the text matching domain, we
also introduce the mainstream text matching tasks and models. Text
matching technologies have been applied to lots of areas including
Natural Language Inference [3], Paraphrase Identification [10], and
Information Retrieval [14]. The mainstream text matching models
transform the sentences into sentence representations first and
then model the relationship among sentences using technologies
like cross-attention [7]. Most of the existing work investigates the
matching between two sentences. Our proposed query-to-session
framework, nevertheless, involves matching between sequence of

utterances. More specifically, both the query and the candidate
session consist of multiple utterances. The relationships among
the utterances in the query or in the candidate session become
quite important in our setting. To cope with this knotty problem,
we propose an insightful dialogue flow strategy to capture the
tangled relationships among them. See more details in §3.5. And in
the future, we will explore to adapt the proposed dialogue flow to
related domains like conversational search [4].

3 QUERY-TO-SESSION MATCHING
In this part, we first introduce the task formulation which also
contains the notations. Then, the model overview is introduced
to summarize the model. After that, we will introduce the basic
attentive module and our proposed dialogue flow aware query-to-
session matching model in detail.

3.1 Task Formulation
Our dialogue flow aware query-to-session matching model is de-
signed to perform the query-to-session matching task. Each sample
in the training set is denoted as {𝑄, 𝑆, 𝑙}, where 𝑄 is the query, 𝑆
is the candidate session, and 𝑙 ∈ {0, 1} is the label which indicates
whether the response 𝑅 in session 𝑆 is an appropriate response to
the query 𝑄 . The session 𝑆 = {𝐻, 𝑅, 𝐹 } consists of the candidate
response 𝑅 and its corresponding history𝐻 and future 𝐹 . The query
𝑄 , history𝐻 , and future 𝐹 are all sequences of utterances which can
be formulated as 𝑄 = {𝑄0, · · · , 𝑄𝑇𝑞−1}, 𝐻 = {𝐻0, · · · , 𝐻𝑇ℎ−1}, and
𝐹 = {𝐹0, · · · , 𝐹𝑇𝑓 −1}, where 𝑄 𝑗 , 𝐻 𝑗 , 𝐹 𝑗 are utterances and𝑇𝑞,𝑇ℎ,𝑇𝑓
are the max turn numbers for the query, history, and future respec-
tively. The response 𝑅 is a single utterance. Given the query 𝑄 and
candidate session 𝑆 , our goal is to predict the label 𝑙 correctly.



3.2 Model Overview
Our model contains three layers: the representation layer, the dia-
logue flow layer, and the interaction layer. The representation layer
uses an attentive module to encode the utterances. The dialogue
flow layer models the dialogue flow through local and global mem-
ory networks and explores how much information of utterances
should be written to the dialogue flow. The interaction layer uti-
lizes an attentive module and cross-attention mechanism to obtain
the interaction matching representation between the query and
candidate session. Finally, the interaction representations are used
to predict the query-to-session matching score. The entire model is
shown in Figure 2 for better understanding.

3.3 Background: Attentive Module
Inspired by the success of Transformer [27], we adopt the attentive
module following Yuan et al. [36], Zhou et al. [40] to learn the
utterance representations. The attentive module is a variant of
the encoder of the Transformer with single-head attention. The
attentive layer is composed of a single-head self-attention sub-
layer and a position-wise fully connected feed-forward sub-layer.
A residual connection [11] is employed around each of the two
sub-layers, followed by layer normalization [16]. It is abstracted as
𝑓att (Q,K,V) ∈ R𝑡×𝑑𝑘 , where Q ∈ R𝑡×𝑑𝑘 , K ∈ R𝑡×𝑑𝑘 and V ∈ R𝑡×𝑑𝑘
are matrices representing the query input, the key input, and the
value input respectively. 𝑡 is the sentence length and 𝑑𝑘 is the
dimension of the word embedding.

3.4 Representation Layer
Given the query and the candidate session which consists of the
response, the response’s history, and the response’s future, the rep-
resentation layer transforms them into the corresponding utterance
representations. Specifically, they are first transformed into word
embedding representations. Then the aforementioned attentive
module is applied to encode the word embedding representations
into utterance representations.

To better illustrate this process, we take the 𝑖-th utterance in the
query, which is represented as 𝑄𝑖 , as an example. The utterance 𝑄𝑖

is transformed into word representation by looking up the word
embedding table, obtaining the word representation E𝑞

𝑖
∈ R𝑡×𝑑𝑘 ,

where 𝑡 is the sentence length and 𝑑𝑘 is the dimension of word
embedding. Then the word representation is fed into an attentive
module to get the utterance representation U𝑞

𝑖
∈ R𝑡×𝑑𝑘 :

U𝑞

𝑖
= 𝑓att (E𝑞𝑖 , E

𝑞

𝑖
, E𝑞

𝑖
) (1)

The history, the future, and the response can be encoded using the
same approach. The 𝑖-th utterance of the history and future can be
represented as Uℎ

𝑖
and U𝑓

𝑖
. The response can be represented as U𝑟 .

The reasons why we encode the utterances using the attentive
module are two-fold: firstly, the attentive module not only shows
great success in machine translation [27], but also achieves superior
performance in pre-training [2, 5] and response selection [26, 40].
Additionally, the attentive module is much faster than its RNN-
based counterparts, which tremendously improves the training and
inference efficiency.

3.5 Dialogue Flow Layer
3.5.1 Why Dialogue Flow is Necessary? There are multiple utter-
ances in the query, history, and future, somodeling the relationships
among the utterances becomes important. Generally, we have the
following two intuitions:
(1) Not all information of utterances contribute to matching accu-

racy. Namely, the utterances always contain noise and unrelated
information.

(2) The farther the utterance is from the response, the less it con-
tributes to the matching task.2 The utterances in different po-
sitions play different roles. Not all the utterances of the query,
history, and future contribute equally to the query-to-session
matching.

The aforementioned intuitions naturally lead to one key problem:
how to extract useful information (rather than the noise, see in ques-
tion 1) from the utterances with different usefulness (see in question 2).
To solve this problem, we propose a framework named dialogue
flow to extract useful information. Dialogue flow can be viewed as
a generalized memory network. It aims to appropriately combine
the related information that can help the matching task from the
utterances (history, future, etc.). In other words, it only keeps use-
ful information in its memory. Along with the dialogue flow, the
useful information of each utterance is updated to the dialogue flow
memory. The memory stores the dialogue information from the
start-point to the current checkpoint. Though with similar names,
the dialogue flow strategy involved in our work is quite different
from that of FLOWQA [13]. FLOWQA explores the dialogue flow of
document representation for the machine reading comprehension
task, which is inappropriate and hard to be applied in the response
selection task.

3.5.2 Dialogue Flow Direction. Before introducing the dialogue
flow model, we need to define the dialogue flow direction for the
query, history, and future. Response is the key utterance in the can-
didate session, so we put the response after the last utterance in his-
tory and before the first utterance in the future. For simplicity, in the
following, history represents the response-integrated history (the
dialogue turns before response and the response itself). Similarly,
future represents the response-integrated future (response itself
and the dialogue turns after the response). As we have introduced,
the closer certain utterance is to the response, the more important
role it plays in the matching task. To capture such motivation, the
dialogue flow of the query, the history, and the future all take the
utterance nearest to the response as the start-point, and flow to the
farthest utterance from the response.

3.5.3 Dialogue Flow Strategies. Two kinds of dialogue flow strate-
gies are proposed: local dialogue flow and global dialogue flow.
What difference lies between the local and global dialogue flow?
These two dialogue flow strategies focus on different aspects. The lo-
cal dialogue flow focuses its attention on its own utterances, i.e., the
query dialogue flow only focuses on the query utterances while the
future dialogue flow only concentrates on the future utterances, etc.
The global dialogue flow, however, takes the whole query-session

2For history, the latter utterances are always more important than the former ones in
the history utterances. As for the future, the former, nevertheless, are more related to
the response than the latter.



Figure 3: Local (left) and global (right) dialogue flow updat-
ing. tanh denotes the whole operation in Equation 3 and
Equation 8 of local and global dialogue flow respectively.
The crucial difference between the local dialogue flow and
the global dialogueflow is that: the utterance representation
in the global dialogue flow first attends to the global repre-
sentation G to obtain an intermediate representation.

pair into consideration when updating the dialogue flow memory.
In other words, the global dialogue flow considers not only its own
utterances but also the global view. We provide an analogy for
better understanding. The local dialogue flow is an expert versed
in a single aspect. However, the global dialogue flow is more like a
polymath who is knowledgeable in multiple aspects but may not be
as good as the expert in certain aspects. Through our experimental
results, we find the combination of these two strategies can further
boost the matching performance since they capture the dialogue
flow from two different perspectives: (1). the pure and specialized
local flow. (2) the interrelated and encyclopedic global-aware flow.
(1). Local dialogue flow: We take the dialogue flow in the fu-
ture as an example. The dialogue flow in the query and history
can be modeled in the same way. Given the future representations
{U𝑓

0 , · · · ,U
𝑓

𝑇𝑓
}. The dialogue flow is from the first utterance in the

future to the last utterance. We model the dialogue flow using mem-
ory network [8, 24]. The 𝑖-th local memory S𝑓

𝑙,𝑖
∈ R𝑡×𝑑𝑘 represents

the dialogue flow up to now. The memory updating adds and deletes
the message of the 𝑖-th utterance U𝑓

𝑖
to the memory S𝑓

𝑙,𝑖
, forming

the next memory S𝑓
𝑙,𝑖+1.

In detail, we first calculate which information of the current
utterance is related to the dialogue flow (question 1). We take the
attention mechanism to extract useful information:

S𝑓
𝑢,𝑖

= Softmax(
S𝑓
𝑖
U𝑓

𝑖

T√
𝑑𝑘

)U𝑓

𝑖
(2)

where S𝑓
𝑢,𝑖

∈ R𝑡×𝑑𝑘 indicates the weighted sum of rows in current

utterance representation U𝑓

𝑖
and the weights are controlled by S𝑓

𝑖
.

S𝑓
𝑢,𝑖

decides which information inU𝑓

𝑖
will be updated to the dialogue

flow memory S𝑓
𝑖
.

Next, we answer question 2 by assigning a weight to the updating
information 𝑆

𝑓

𝑢,𝑖
. The weight is calculated by:

𝛼𝑖 = tanh(MLP( [S𝑓
𝑙,𝑖
, S𝑓

𝑢,𝑖
])) (3)

where [, ] means concatenation and MLP represents the multi-layer
perceptron. 𝛼𝑖 ∈ (−1, 1) is the updating weight which is from -1
to 1. 𝛼𝑖 also controls whether the information should be added or
deleted to S𝑓

𝑖
. negative 𝛼𝑖 represents deletion and positive 𝛼𝑖 means

addition.
Finally the utterance updating information S𝑓

𝑢,𝑖
is updated to the

local dialogue flow memory S𝑓
𝑙,𝑖

with weight 𝛼𝑖 , forming the next

memory S𝑓
𝑙,𝑖+1:

S𝑓
𝑙,𝑖+1 = S𝑓

𝑙,𝑖
+ 𝛼𝑖S

𝑓

𝑢,𝑖
(4)

S𝑓0 is initialized by the first utterance in the future: S𝑓0 = U𝑓

0 .
Different from other memory networks [8, 20] which model the ad-
dition and deletion operation separately, we integrate them into one
operation as in Equation 4. 𝛼𝑖 can dynamically decide whether to
add or delete information of the current utterance into the dialogue
flow.
(2). Global dialogue flow: The local memory only considers the
local dialogue flow in the query, history, and future. Here we have
a whole dialogue flow at hand, to what extent the utterances in the
future are useful should also be influenced by the query and history,
and vice versa. So we propose the global dialogue flow of which
both the query and the candidate session are considered when
updating the memory. We first calculate the global query-session
pair representation:

G = [U𝑞,Uℎ,U𝑓 ] (5)

where U𝑓 ∈ R𝑇𝑓 𝑡×𝑑𝑘 is the concatenation of {U𝑓

0 , · · · ,U
𝑓

𝑇𝑓
}. U𝑞

and Uℎ are constructed in the same way.
Different from the local dialogue flow, current utterance first

attends to the global representation G forming the global-aware
utterance representation U𝑓

𝑔,𝑖
∈ R𝑡×𝑑𝑘 :

U𝑓

𝑔,𝑖
= Softmax(

U𝑓

𝑖
GT√
𝑑𝑘

)G (6)

Then the global-aware utterance representation U𝑓

𝑔,𝑖
replaces

the utterance representation U𝑓

𝑖
in Equation 2 forming the global-

aware dialogue flow updating (other operations are the same as the
local dialogue flow.):

𝑆
𝑓

𝑢,𝑖
= Softmax(

S𝑓
𝑖
U𝑓

𝑔,𝑖

T√
𝑑𝑘

)U𝑓

𝑔,𝑖
(7)

𝛼𝑖 = tanh(MLP( [S𝑓
𝑔,𝑖
, S𝑓

𝑢,𝑖
])) (8)

S𝑓
𝑔,𝑖+1 = S𝑓

𝑔,𝑖
+ 𝛼𝑖S

𝑓

𝑢,𝑖
(9)

Finally, the local and global dialogue flow memories are concate-
nated into the final dialogue flow representations S𝑓

𝑙
∈ R𝑇𝑓 𝑡×𝑑𝑘



Figure 4: The interaction block. We take the query-history
matching in the local dialogue flow as an example

and S𝑓𝑔 ∈ R𝑇𝑓 𝑡×𝑑𝑘 respectively:
S𝑓
𝑙
= [S𝑓

𝑙,0, · · · , S
𝑓

𝑙,𝑇𝑓
] local dialogue flow

S𝑓𝑔 = [S𝑓
𝑔,0, · · · , S

𝑓

𝑔,𝑇𝑓
] global dialogue flow

(10)

The local and global dialogue flow of query {S𝑞
𝑙
, S𝑞𝑔 } and history

{Sℎ
𝑙
, Sℎ𝑔 } can be obtained in the same way.

3.6 Interaction Layer
After obtaining the dialogue flow memories, we need to make
interaction over the query and the history to get the matching
relationship between them. The interaction over the query and
future is also needed. In recent years, the researchers adopt the
cross-attention mechanism [32, 35] to obtain the interaction match-
ing representations, which has shown great success in a lot of tasks
[3, 10]. Here we adopt the cross-attention mechanism to learn the
interaction representation.

The inputs of the interaction layer can be the utterance represen-
tations {U𝑞,Uℎ,U𝑓 }, or the local dialogue flowmemory {S𝑞

𝑙
, Sℎ

𝑙
, S𝑓

𝑙
},

or the global dialogue flow memory {S𝑞𝑔 , Sℎ𝑔 , S
𝑓
𝑔 } to learn inter-

action representations in different levels, where U∗ ∈ R𝑇∗𝑡×𝑑𝑘 ,
S∗
𝑙
∈ R𝑇∗𝑡×𝑑𝑘 and S∗𝑔 ∈ R𝑇∗𝑡×𝑑𝑘 . We take the interaction between

the query and the history in the local dialogue flow level as an
example. Other interaction representations can be obtained in the
same way. The interaction layer is presented in Figure 4.
(1) Two-level cross-attention: We first calculate the two-level

cross-attention matrix between query and response’s history:
the word representation level cross-attention matrix Mℎ

1 ∈
R𝑇ℎ𝑡×𝑇ℎ𝑡 and the dialogue flow aware representation level cross-
attention matrix Mℎ

2 ∈ R𝑇ℎ𝑡×𝑇ℎ𝑡 . Each element of the cross-
attention matrixMℎ

1 andMℎ
2 is represented as:{

Mℎ
𝑙,1,𝑎,𝑏 = {E𝑞}T𝑎 · {Eℎ}𝑏 word-level

Mℎ
𝑙,2,𝑎,𝑏 = {S𝑞

𝑙
}T𝑎 · {Sℎ

𝑙
}𝑏 dialogue-flow-level

(11)

in which {E𝑞}𝑎 is the 𝑎-th row of E𝑞 and {Sℎ
𝑙
}𝑎 is the 𝑎-th row

of Sℎ
𝑙
.

(2) Attentive cross-attention: The self-attentive module is de-
signed to learn the self-attentive representation and it can also
learn the history-aware query representation and query-aware

history representation which makes more interaction between
them. The attentive query representation S′𝑞

𝑙
and the attentive

history representation S′ℎ
𝑙

are represented as:

S′𝑞
𝑙

= 𝑓att (S𝑞𝑙 , S
ℎ
𝑙
, Sℎ

𝑙
) (12)

S′ℎ
𝑙

= 𝑓att (Sℎ𝑙 , S
𝑞

𝑙
, S𝑞

𝑙
) (13)

Then, a new cross-attention matrix can be calculated:

Mℎ
𝑙,3,𝑎,𝑏 = {S′𝑞

𝑙
}T𝑎 · {S′ℎ

𝑙
}𝑏 (14)

(3) Projection sublayer: The three cross-attention matrices are
then stacked into one matrixMℎ

𝑙
∈ R3×𝑇ℎ𝑡×𝑇ℎ𝑡 . Then a 2-layer

2-D CNN is adopted to project the attentionmatrixMℎ
𝑙
to match-

ing features. The output of the CNN are flattened and mapped
into low-dimension vector representation dℎ

𝑙
:

Mℎ
𝑙
= 𝑓stack (Mℎ

𝑙,1,M
ℎ
𝑙,2,M

ℎ
𝑙,3) (15)

dℎ
𝑙
= 𝑓flat (𝑓CNN (Mℎ

𝑙
)) (16)

After the interaction layer, we obtain the query-history interaction
representation dℎ

𝑙
. The interaction layer can be abstracted as:

dℎ
𝑙
= 𝑓inter (S

𝑞

𝑙
, Sℎ

𝑙
, E𝑞, Eℎ) (17)

In the same way, we can obtain the utterance representation level
interaction representation for history and future (dℎ𝑢 , d

𝑓
𝑢 ), the local

dialogue flow representation level (dℎ
𝑙
, d𝑓

𝑙
), and the global dialogue

flow representation level (dℎ𝑔 , d
𝑓
𝑔 ), by feeding different inputs to

the interaction layer as introduced in the second paragraph of the
section “interaction layer”.

3.7 Model Training
The six interaction representations {dℎ𝑢 , d

𝑓
𝑢 , dℎ𝑙 , d

𝑓

𝑙
, dℎ𝑔 , d

𝑓
𝑔 } are con-

catenated and fed into an MLP to predict the query-to-sessionmatch-
ing prediction score 𝑝:

𝑝 = MLP( [dℎ𝑢 , d
𝑓
𝑢 , d

ℎ
𝑙
, d𝑓

𝑙
, dℎ𝑔 , d

𝑓
𝑔 ]). (18)

And the cross-entropy loss is calculated by (𝐷 represent all the
training samples):

L = − 1
|𝐷 |

∑
(𝑄,𝑆,𝑙) ∈𝐷

𝑙 log𝑝 + (1 − 𝑙) log(1 − 𝑝) (19)

Inspired by Tao et al. [26], we fed each of the six interaction
representations into an MLP respectively to obtain six matching
prediction scores {𝑝ℎ𝑢 , 𝑝

𝑓
𝑢 , 𝑝

ℎ
𝑙
, 𝑝

𝑓

𝑙
, 𝑝ℎ𝑔 , 𝑝

𝑓
𝑔 }. The cross-entropy is also

calculated for the six scores. The average of the cross-entropy loss
for the six scores is added to the cross-entropyL to train the models.
The final ranking score 𝑝𝑟 is calculated by:

𝑝𝑟 = 𝑝 +
𝛽𝑝ℎ𝑢 + 𝛽𝑝

𝑓
𝑢 + 𝛾𝑝ℎ

𝑙
+ 𝛾𝑝 𝑓

𝑙
+ 𝛾𝑝ℎ𝑔 + 𝛾𝑝 𝑓𝑔

2𝛽 + 4𝛾
, (20)

where 𝛽 controls the contribution of utterance level matching
scores, and 𝛾 controls the dialogue flow level contributions. In
our model, 𝛽 is set to 2 and 𝛾 is set to 1 to balance the utterance
level matching scores and dialogue flow level matching scores.



Table 1: The number of {query, session} pairs in training, val-
idation and testing set for the three corpora. The vocabulary
size is also shown in the Table.

Dataset # Training # Validation # Testing # Vocab
Ubuntu 1,013,172 102,000 102,210 438,565
Douban 956,918 104,220 104,560 156,159
E-commerce 494,916 120,740 118,020 36,130

4 EXPERIMENT SETUP
In this section, we introduce the dataset construction, the evaluation
metrics, the model settings, and the baselines.

4.1 Dataset Construction
In this section, we first introduce the original datasets involved in
our experiments and then describe how we modify these original
datasets into the corpora we need.

4.1.1 Original Datasets. We compose the query-session pairs based
on the conversations from three widely used corpora. The Ubuntu
Dialogue Corpus [18] contains multi-turn technical support con-
versations from the Ubuntu-related chat rooms on the Freenode
Internet Relay Chat network3. The Douban Conversation Corpus
[32] contains open-domain conversations from the Chinese social
network Douban4. The conversations in E-commerce Dialogue Cor-
pus [37] are between the customers and customer service staffs
from Taobao5 which is the largest e-commerce platform in China.

4.1.2 Dataset Construction. The key question we face is how to
construct the whole query-history-response-future (QHRF) pairs
from the initial corpora which consist of only query-response pairs.
The whole process is described as follows:
(1) Suppose we have a conversation 𝐶𝑎 . We randomly select an

sentence in 𝐶𝑎 as the response 𝑟𝑎 . The sentences before the re-
sponse in𝐶𝑎 are the query 𝑞𝑎 . The sentences after the response
become the future 𝑓𝑎 :

𝐶𝑎 = 𝑞𝑎 + 𝑟𝑎 + 𝑓𝑎

(2) However, the aforementioned conversation𝐶𝑎 lacks the history.
Because the sentences before the response have been the query.
If the utterances before the response also become history, the
history and query are the same and the model will only learn
to judge if the query and history are the same.
To solve such problem, another kind of QHRF pairs are con-
structed. Assume that we have another conversation 𝐶𝑏 which
also contains the response 𝑟𝑎 (𝑟𝑏 = 𝑟𝑎). The response 𝑟𝑏 in
𝐶𝑏 is an appropriate response for 𝑞𝑎 , so 𝐶𝑏 is an appropriate
candidate session for 𝑞𝑎 . The sentences before 𝑟𝑏 in 𝐶𝑏 are the
response’s history ℎ𝑏 while the sentences after 𝑟𝑏 in𝐶𝑏 become
the future 𝑓𝑏 :

𝐶𝑏 = ℎ𝑏 + 𝑟𝑏 + 𝑓𝑏

If there is no conversation 𝐶𝑏 which contains the same re-
sponse with 𝑟𝑎 , the case will not be added to the second kind

3https://freenode.net/
4https://www.douban.com/group/
5https://www.taobao.com/

of QHRF pair in Equation 21. The responses which occur once
are dropped and the common responses are reserved. To avoid
this bias and keep the diversity of the responses, the first kind
of the QHRF pair in Equation 21 is reserved for all the cases.

(3) For the {𝑞𝑎, 𝑟𝑎 }, we have two kinds of query-history-response-
future pairs in the above settings:

QHRF pairs =

{
[𝑞𝑎, 𝑢𝑛𝑘, 𝑟𝑎, 𝑓𝑎] 𝐶𝑎

[𝑞𝑎, ℎ𝑏 , 𝑟𝑏 , 𝑓𝑏 ] query + 𝐶𝑏
(21)

For the first kind of QHRF pairs which lack response’s history,
we use 𝑢𝑛𝑘 to represent the history to train the models.

For each query, we randomly sample another session as the negative
sample. As for the validation and testing set, we sample 9 negative
samples instead of 1 following previous work [18]. The statistics of
the three datasets are shown in Table 1. All datasets will be released
for future research.

4.2 Evaluation Metrics
Following Tao et al. [26], Wu et al. [32], we evaluate the models in
terms of MRR (Mean Reciprocal Rank) [29], R10@1, R10@2, R10@5,
and R2@1, which are all frequently-used metrics in response selec-
tion tasks. R𝑛@𝑘 calculates the recall of the true positive responses
among the 𝑘 selected candidates from 𝑛 available candidates. The
MRR first calculates the reciprocal rank in which the reciprocal
rank of each query is the multiplicative inverse of the rank of the
first correct response. Then the average of reciprocal rank over the
whole testing set becomes the MRR score.

4.3 Model Setup
We use Adam [15] optimizer with a learning rate of 0.0001 and a
batch size of 100 to optimize the parameters. The exponential decay
of 0.9 on the learning rate is applied every 5000 iterations. The word
embedding dimension is 200, andwe pre-train the word embeddings
through GloVe [21] for the corpora separately. The embeddings are
tuned during the model training to get better performance. In the
future, we will explore to use the contextualized word embeddings
to obtain better performance. The vocabulary sizes are shown in
Table 1 following the previous work [26, 32]. The max turn numbers
of the query, history, and future are all 5 and the max utterance
length is 20, which is sufficient to cover most of the turns and words
in the corpora. We use padding to handle the various lengths of
the text. The best performing checkpoint on the validation set is
selected according to R10@1 for testing.

In §3.6, we adopt two convolution layers to encode the cross-
attention matrix. The stride sizes of the convolution and max-
pooling layer are (1,1) and (3,3) respectively. The filter sizes are
all (3,3) for the convolution and max-pooling layers. The output
channels of the two convolution layers are 32 and 16 respectively.

4.4 Baselines and Models
In this paper, we have the following hypotheses:
Hypothesis I: Our proposed query-to-sessionmatching approa-

ch generally outperforms conventional query-
to-response approaches.

Hypothesis II: Our proposed DF-QSM model is superior to
other models in utilizing the candidate session

https://freenode.net/
https://www.douban.com/group/
https://www.taobao.com/


Table 2: Evaluation results. The inference time for each case is also shown in the table to analysis efficiency. The results of
DF-QSM are significant with p-value < 0.01measured by the Student’s paired t-test over the QRMmodels.

Models Ubuntu Dialogue Corpus Douban Conversation Corpus E-commerce Dialogue Corpus Time

MRR R10@1 R10@2 R10@5 R2@1 MRR R10@1 R10@2 R10@5 R2@1 MRR R10@1 R10@2 R10@5 R2@1 (ms)

Comparison between our DF-QSM model and baselines
SMN-QRM 0.6530 0.5572 0.7196 0.9204 0.8646 0.7275 0.6536 0.7963 0.9530 0.9101 0.7543 0.6872 0.8607 0.9776 0.9327 41
DAM-QRM 0.7003 0.6196 0.7688 0.9376 0.8921 0.7459 0.6776 0.8103 0.9564 0.9155 0.7662 0.7023 0.8654 0.9786 0.9381 77
IoI-QRM 0.7275 0.6530 0.7957 0.9500 0.9070 0.7529 0.6860 0.8199 0.9626 0.9204 0.8088 0.7566 0.9003 0.9858 0.9518 100
DF-QSM (ours) 0.8105 0.7588 0.8770 0.9705 0.9365 0.8396 0.7954 0.9033 0.9819 0.9540 0.8192 0.7695 0.9050 0.9875 0.9545 103

Baselines that applied with OUR QSM framework
BiMPM-QSM 0.7810 0.7213 0.8286 0.9378 0.9098 0.8213 0.7717 0.8843 0.9768 0.9446 0.7730 0.7102 0.8521 0.9685 0.9265 138
DAM-QSM 0.7932 0.7370 0.8346 0.9357 0.9097 0.8272 0.7796 0.8821 0.9704 0.9430 0.7759 0.7156 0.8599 0.9630 0.9269 272
IoI-QSM 0.8064 0.7537 0.8499 0.9392 0.9165 0.8249 0.7765 0.8771 0.9680 0.9430 0.7918 0.7348 0.8677 0.9670 0.9341 581

Ablation study: session ablation
DF-QSM Base 0.6916 0.6075 0.7611 0.9356 0.8869 0.7523 0.6843 0.8175 0.9608 0.9167 0.7865 0.7284 0.8807 0.9827 0.9438 24
DF-QSM w/o F 0.7097 0.6312 0.7797 0.9381 0.8920 0.7617 0.6967 0.8297 0.9594 0.9220 0.7889 0.7309 0.8824 0.9820 0.9426 40
DF-QSM w/o H 0.7884 0.7299 0.8462 0.9584 0.9263 0.8194 0.7694 0.8836 0.9792 0.9475 0.8059 0.7531 0.8954 0.9842 0.9503 39

Ablation study: dialogue flow ablation
DF-QSM w/o DF 0.8024 0.7480 0.8686 0.9668 0.9351 0.8217 0.7739 0.8908 0.9793 0.9491 0.8100 0.7589 0.9001 0.9852 0.9532 37
DF-QSM w/o GDF 0.8087 0.7560 0.8695 0.9674 0.9349 0.8320 0.7863 0.9010 0.9811 0.9527 0.8145 0.7652 0.8995 0.9874 0.9544 64
DF-QSM w/o LDF 0.8025 0.7488 0.8732 0.9671 0.9347 0.8336 0.7879 0.8972 0.9845 0.9530 0.8152 0.7641 0.9033 0.9866 0.9532 82

information in our proposed query-to-session
approach.

Hypothesis III: The components (local dialogue flow, global
dialogue flow) in our proposed DF-QSM model
all contribute to the QSM’s performance.

Hypothesis IV: Both the history and the future help the re-
sponse selection task.

To verify the aforementioned hypotheses, we consider five types of
baselines and models:
(a) The SOTA models in the query-to-response matching approach.

SMN [32] is designed for the response selection task. DAM
[40] is a strong baseline for the QRM task. IoI [26] is the state-
of-the-art model of the QRM task. We adopt them as the query-
to-response matching baselines. They are represented as SMN-
QRM, DAM-QRM, and IoI-QRM. To make the results reliable,
we use the official code released by the authors.

(b) The strong text-matching models but applied with our query-to-
session matching approach. DAM-QSM and IoI-QSM concate-
nate the history, response, and future into one sentence as a
fake response. Then the query and the fake response are fed
into DAM or IoI to predict the matching score. Different from
IoI-QSM which only concatenates the session into one utter-
ance, BiMPM-QSM also concatenates the whole query into one
utterance. In this way, the sentence-to-sentence matching mod-
els can be applied to the two utterances. Here, we feed the two
concatenated utterances into bilateral multi-perspective match-
ing (BiMPM) [31] model to predict the matching score. BiMPM
has shown great success in sentence-to-sentence text matching
tasks. It mainly utilizes Bidirectional Long Short Term Mem-
ory (BiLSTM) [12] to learn the sentence representations and
aggregate the cross matching representations.

(c) Our full-version proposed dialogue flow aware query-to-session
matching model, represented as DF-QSM.

(d) Our ablated-version DF-QSMmodel to analyze the Dialogue Flow
component (model ablation). “DF-QSM w/o LDF” and “DF-QSM

w/o GDF” omit the local and global dialogue flow respectively.
“DF-QSM w/o DF” means the whole dialogue flow is omitted.

(e) Our ablated-version DF-QSM model without history or future,
denoted as “DF-QSM w/o H” and “DF-QSM w/o F” (session abla-
tion). Besides, “DF-QSM Base” works as the base component
where both the future and history are omitted and only the
response is considered in the candidate session.

The comparisons between (a) and (c) are to contrast the query-to-
response approach against the query-to-session approach (Hypothe-
sis I). The comparison results between (b) and (c) are to check
Hypothesis II. The ablations (d) and (e) are designed to check the
Hypothesis III and Hypothesis IV respectively.

5 RESULTS AND ANALYSIS
In this section, we first introduce the model results and ablation
studies to demonstrate the performance of our proposed model in
§5.1. To evaluate the efficiency of our proposed QSM framework
and manifest the industrial prospect of our DF-QSM models, we
present the efficiency experiment results in §5.2. After that, we
introduce the analysis of the dialogue flow updating weight (§5.3)
and the size of the candidate session (§5.4) for better comprehension
of the proposed QSM framework and DF-QSM model.

5.1 Results and Ablation Studies
We conduct experiments on three datasets and the results are shown
in Table 2. Generally, models applied with our query-to-session
strategies significantly outperform their query-to-response coun-
terparts. Additionally, the ablation study (including model ablation
and session ablation) also verifies the effectiveness and necessity
of each component in our model. We present the detailed analyses
in the order of the hypotheses in §4.4.

5.1.1 Comparison between QSM and QRM: Hypothesis I. Com-
pared to the QRM baselines, the models applied with our QSM
strategy (BiMPM-QSM, DAM-QSM, IoI-QSM, DF-QSM) show great



improvement over the strong QRM model IoI, especially on the
Ubuntu and Douban corpora. The DF-QSM also gains 0.01 improve-
ment of R10@1 on the E-commerce dataset. The results are strong
evidence to prove the superiority of query-to-sessionmatching strat-
egy over the conventional query-to-response strategy.

5.1.2 Comparison between DF-QSM and Existing Models Adapted in
Our QSM Framework: Hypothesis II. Compared with the baselines
adapted into our QSM framework (DAM-QSM, IoI-QSM, BiMPM-
QSM), which are strong baselines for the QSM framework, our
DF-QSM model achieves SOTA on all of the metrics. It shows that
our proposed dialogue flow aware representations can handle the
intractable matching problem between sequences of utterances well
and be helpful for the query-to-session matching.

5.1.3 Model Ablation: Hypothesis III. We conduct the model ab-
lation to investigate the effect of the local dialogue flow strategy
and the global dialogue flow strategy. The comparisons among
{DF-QSM, QSM w/o GLF, QSM w/o LDF, QSM w/o DF} show the
enhancement brought by our dialogue flow strategies. Furthermore,
it shows that the local and global dialogue flow strategies work
together to obtain the best performance.

5.1.4 Session Ablation: Hypothesis IV. Except for the compar-
isons between QRM and QSM, which verifies the effectiveness of
the whole session, we also conduct the session ablation to study
the effectiveness of history and future. DF-QSM considers all the
history, response, and future. “DF-QSM Base” only considers the re-
sponse. “QSM w/o H” and “QSM w/o F” omit the history and future
respectively. The performance of DF-QSM drops significantly when
omitting the history or future. The results on the four models show
that the history and future are all helpful for the response selection.
It also indicates the way to construct the query-history-response-
future makes sense. Besides, we can observe that the future is more
useful than the history, the reason lies in that not all the QHRF
pairs contain history, some of them are replaced by 𝑢𝑛𝑘 as in §4.1.

5.2 Model Efficiency
To evaluate the efficiency of our proposed methods, we present the
average inference time of each case for all the involved models in
Table 2. The efficiency experiment is conducted on the same Nvidia
P100 GPU for fairness. From the experimental results, we have the
following observations: (1) Compared with QRM-based baselines,
our proposed model DF-QSM gains great improvement measured
by different evaluation metrics. Additionally, the inference time
of DF-QSM is comparable with the strong QRM baseline IoI-QRM.
Although the inference time of SMN-QRM is the lowest among
the QRM models, its performance is unsatisfactory. (2) Compared
with other baselines applied with our QSM framework (BiMPM-
QSM, DAM-QSM, and IoI-QSM), our proposed DF-QSM not only
achieves the best performance, but also uses the shortest time. The
efficiency improvement could be attributed to the attentive block
and memory network in our DF-QSM model, which are efficient
against the RNN-based models.

5.3 Memory Updating Weight Analysis
In the dialogue flow layer, the memory updating weight 𝛼 (see in
Equation 8) controls how much information will be added into or

Figure 5: Average of memory updating weights 𝛼 for each
turn. For each utterance, the farther the utterance is from
the response, the bigger its turn index is.

Figure 6: The performancewith different session sizes.With-
out loss of generality, we use the future size to illustrate the
effects of session size.

deleted from the dialogue flow memory. This weight reflects the
influence of the current utterance to the query-to-session matching
task. The larger 𝛼 is, the more important role this utterance plays
in the query-to-session matching task. We compute the average of
absolute memory updating weights across the testing set for each
turn in the query, history, and future respectively. The results are
shown in Figure 5. When modeling the dialogue flow, the response
is added to the history and future as in §3.5.2, so the history and
future contain 6 turns while the query contains 5 turns. The fol-
lowing findings can be summarized from the Figure: (1) Generally,
the farther the utterance to the response, the less this utterance
contributes to the QSM matching task. (2) Both the history and
query indicate what has been asked. However, the future represents
what will happen. So the tendency of context and history are quite
similar, especially for the Ubuntu and Douban corpora. (3) For the
Douban corpus, the weights become flattening after the third turn.
We assume the reason is that the Douban corpus contains open-
domain conversations. The open-domain conversations are usually
more casual and contain multiple topics in a dialogue session. So
the utterances which are far from the response contribute much
less than the near ones.

5.4 Session Size Analysis
As shown in the previous sections, we have proven that the history
and the future do benefit to the response selection task. Next, an-
other key question arises:How large a session do we need? In general,
a large session may introduce not only useful information but also
noise. Without loss of generality, we only analyze the results under
different future size to explore how large a session do we need. The
results are shown in Figure 6. We can find that the performance



increases as the turn number increases, especially for the Ubuntu
corpus and E-commerce corpus. As for the Douban corpus, it be-
comes almost flattening after the second turn. The reason may be
that the Douban corpus contains more open-domain conversation
in which the topics change a lot with the dialogue going on. We
can see from the results that a too large session will not introduce
more performance improvement.

6 CONCLUSION
In this paper, we presented the query-to-session matching approach
for response selection in multi-turn retrieval-based dialogue sys-
tems, which transcends the query-to-response matching counter-
parts significantly. We were surprised by the extent of the improve-
ment brought by the history and the future of response in the
session. Furthermore, our proposed local and global dialogue flow
strategies provide graceful and efficient strategies to precisely in-
tegrate the utterance information into the memory network. The
experimental results verify the superiority brought by our proposed
DF-QSM models.
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